Understanding and precision targeting of malfunctioning gene regulatory elements in human cancer and other enhanceropathies

About our lab

The Precision Cancer Epigenomics laboratory at NCMM (Nordic-EMBL Partnership Institute) at the University of Oslo, Norway started in September 2022.

The Enhancer Biology lab started in June 2019 in the Applied Tumor Genomics research program of the Faculty of Medicine at the University of Helsinki, Finland.

We have a total of 10 group members in both our Oslo and Helsinki groups, lead by Dr Biswajyoti Sahu, and we are looking forward to grow in the coming days!

Our goal is to understand the molecular mechanisms of chromatin reprogramming by transcription factors in cell fate control and in cancer and human enhanceropathies.

We use state-of-the-art genomics methods for transcription factor binding, functional enhancer activity, chromatin accessibility and genome editing by CRISPR-Cas9.

We employ computational tools to analyse and integrate genome wide datasets from several multiomics methods utilising next-generation sequencing.

Our research

Role of defined transcription factors in cell fate and organ-specific cancer

We use novel cell fate conversion methods to study the early regulatory events in pancreatic cancer – one of the most lethal cancer types currently lacking clear diagnostic markers and effective treatment options.

Non-coding regulatory genome and enhancer malfunction in cancers of ENDODERMAL LINEAGE

Our goal is to understand the human regulatory elements in enhancer reprogramming and malfunction using a plethora of functional genomics methods in several cancer types of endodermal lineage.

Reprogamming of the Epigenome during cancer progression and ENDOMETRIOSIS

To understand the epigenome reprogramming events during disease progression, we are using hospital biobank samples for prostate cancer and innovative cell-based models for delineating the molecular causes of endometriosis.

Our methods

To achieve our research objectives, we utilize various cutting-edge genome-wide techniques based on next generation sequencing and their computational analysis from bulk samples to single cell and single molecule resolution.

Latest news

We’ve received a grant from the ‘Norwegian Cancer Society (Kreftforeningen)’

Our team

I lead the Precision Cancer Epigenomics laboratory in Oslo and the Enhancer Biology laboratory in Helsinki. I am genomics scientist by training and the primary goal of my research is to understand the role of transcription factors and the non-coding regulatory genome in human enhanceropathies such as cancer.

I am a Group Leader in Centre for Molecular Medicine (NCMM, Nordic-EMBL Partnership Institute) of the Faculty of Medicine at the University of Oslo, Norway and also hold an Adjunct Researcher position at the Oslo University Hospital in the Department of Cancer Genetics at the Institute of Cancer Research in Norway.

I am also a Principal Investigator at the Applied Tumor Genomics program of the Research Programs Unit at the Faculty of Medicine, University of Helsinki, Finland. I also hold the title of Docent in Molecular Genetics from the University of Helsinki, Finland.

Samuele Cancellieri, PhD


Liangru Fei, PhD


Divyesh Patel, PhD


Ville Tiusanen, MSc

PhD Student

Celina Wiik, MsC

PhD Student

Veera Erkkilä

Lab Manager

Rasma Gutsmite, MSc

Lab Engineer

Solveig Bakken

Masters Student


Technical Assistant



Latest publications

25 SEPTEMBER 2023 | Developmental Cell

Here, we have generated pancreatic exocrine cells of ductal epithelial identity from human fibroblasts using a set of six TFs. We mapped the molecular determinants of lineage dynamics using a factor-indexing method based on single-nuclei multiome sequencing (FI-snMultiome-seq) that enables dissecting the role of each individual TF and pool of TFs in cell fate conversion.

1 SEPTEMBER 2023 | Nature Communications

Here, we show the role of transposable elements as cancer-specific enhancers using unbiased functional enhancer assay using massively parallel reporter assays (MPRAs, STARR-seq) together with orthogonal functional genomics methods for chromatin accessibility, histone modifications and transcription factor binding.

27 SEPTEMBER 2022 | Nature Biotechnology

Here we describe a competitive genome editing method that measures the effect of mutations on molecular functions, based on precision CRISPR editing using template libraries with either the original or altered sequence, and a sequence tag, enabling direct comparison between original and mutated cells.


If you’d like to get in touch, please use the contact form, call us by phone or visit our lab in Oslo or Helsinki.

Feel free to contact us about possible collaboration opportunities! Motivated researchers (post-docs, PhD, Master’s students) can always contact us to ask about thesis projects and available positions.

Affiliation and funding