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M O L E C U L A R  B I O L O G Y

Diverse oncogenes use common mechanisms to drive 
growth of major forms of human cancer
Otto Kauko1,2,3, Mikko Turunen1,4, Päivi Pihlajamaa1, Antti Häkkinen5, Rayner M. L. Queiroz2,6, 
Mirva Pääkkönen3, Sami Ventelä3,7, Massimiliano Gaetani8,9, Susanna L. Lundström8,9,  
Antonio Murgia2, Biswajyoti Sahu1,10, Johannes Routila7, Gong-Hong Wei11, Heikki Irjala7,  
Julian L. Griffin2,12, Kathryn S. Lilley2,6, Teemu Kivioja1,13, Sampsa Hautaniemi5, Jussi Taipale1,14*†

Mutations in numerous genes contribute to human cancer, with different oncogenic lesions prevalent in different 
cancer types. However, the malignant phenotype is simple, characterized by unrestricted cell growth, invasion, 
and often metastasis. One possible hypothesis explaining this dichotomy is that cancer genes regulate common 
targets, which then function as master regulators of essential cancer phenotypes. To identify mechanisms that 
drive the most fundamental feature shared by all tumors—unrestricted cell proliferation—we used a multiomic 
approach, which identified translation and ribosome biogenesis as common targets of major oncogenic pathways 
across cancer types. Proteomic analysis of tumors and functional studies of cell cultures established nucleolar and 
coiled-body phosphoprotein 1 as a key node, whose convergent regulation, both transcriptionally and posttrans-
lationally, is critical for tumor cell proliferation. Our results indicate that lineage-specific oncogenic pathways 
regulate the same set of targets for growth control, revealing key downstream nodes that could be targeted for 
therapy or chemoprevention.

INTRODUCTION
Mutations in more than 500 genes have been causally linked to can-
cer (1, 2). Several genes exist that are commonly mutated in many 
different cancer types, such as p53, TERT, ATM, and CDKN2A (3, 4). 
These genes are implicated in processes such as maintaining DNA 
integrity and progression through cell cycle checkpoints. However, 
most known cancer genes exhibit a high degree of tissue specificity. 
Notably, genes encoding proteins involved in growth signal trans-
duction, including members of the Wnt, Hedgehog, and tyrosine ki-
nase/RAS/phosphatidylinositol 3-kinase (PI3K) signaling pathways, 
exhibit some of the highest observed mutation frequencies in select 
cancers while not being mutated at observable rates in others (3, 5, 6).

Growth signal transduction promotes the expression of genes 
needed for cell proliferation. Some signal transduction pathways, 
such as Wnt and Hedgehog, activate specific transcription factors 
(TFs) with well-known target genes (7–9). Activation of tyrosine 
kinase/RAS/PI3K signaling can also regulate activity of specific TFs 

(10–12), but most of their downstream targets have an unknown 
function (13). It is thus unclear whether transcriptional regulation is 
the main shared outcome of phosphorylation signaling or whether 
its growth-promoting effect is also transduced more directly via ef-
fects on protein activity levels, e.g., via up-regulation of metabolism 
and translation (14).

Established genetic methods have inherent limitations in their ca-
pacity to systematically identify all targets for mechanism-based can-
cer therapy and prevention. Somatic cancer genetics identifies genes 
that cause cancer, not proteins whose inactivation specifically kills 
cancer cells. In addition, while a somatic mutagenesis “screen” may be 
saturating with respect to individual genes and amino acids, it lacks 
the power to detect combinations of more than ~10 mutations. This 
can lead to a failure to detect large protein complexes and metabolic 
pathways whose tumor growth-promoting activity requires increase 
in levels or activity of multiple subunits or pathway components. In 
such a case, each member of a pathway or protein complex can still be 
individually necessary for the oncogenic activity and thus represent a 
potentially druggable target. Given that genetic approaches have in-
nate limitations in detecting potential drug targets, we hypothesize 
that a variety of presently unknown mechanisms exist whose activity 
could be targeted to treat or prevent cancer (Fig. 1A).

Here, we have studied both transcriptional and posttranslational 
mechanisms in relevant cancer types covering half of population-
level cancer mortality to identify common outcomes of oncogenic 
signaling. The TFs analyzed have all been previously shown to be 
critical for the formation of the tumors and are involved in a sub-
stantial fraction of all cases of the respective forms of cancer (table S1). 
Similarly, the analyzed phosphorylation signaling pathways are fre-
quently activated in their respective cancers (table S1). The selected 
cancer types are associated with diverse tissues and represent a sub-
stantial fraction of all cancer morbidity, which supports the generaliz-
ability of the findings [see (4, 7, 15–22)].

We report here that, of 10 hallmarks of cancer (23), the three that 
are related to cell proliferation (sustaining proliferative signaling, 
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evading growth suppressors, and enabling replicative immortality) are 
the most prominent shared downstream targets of oncogenic signal-
ing in these cancers. No genes were identified that specifically affect 
two other central cancer hallmarks, invasion and metastasis, suggest-
ing that these processes may depend on tumor type–specific mecha-
nisms. Our study provides further insight into regulation of ribosome 
biogenesis and translation by rigorous analysis of fitness effects of spe-
cific gene regulatory and phosphorylation events. We further demon-
strate that the optimal activation of these processes requires that same 
proteins are both up-regulated (by MYC) and phosphorylated (by 
downstream kinases of the Ras/tyrosine kinase pathway), revealing a 
mechanistic explanation for the well-established but poorly understood 
phenomenon of oncogene cooperativity. Last, we show that the identi-
fied mechanisms display specificity to proliferating tumor cells com-
pared to other cells with high protein synthesis capacity.

RESULTS
Oncogenic TFs from major forms of human cancer 
regulate MYC
Targeting oncogenic drivers in any particular tumor results in a 
complex cell type– and drug-specific response and causes a broad 
spectrum of changes in gene expression and posttranslational mod-
ifications. Therefore, we reasoned that generating a large number of 
datasets from different tumor types and focusing on the common 
features across multiple of them would enable us to focus on a more 
limited set of downstream mechanisms that are critical for cell pro-
liferation regardless of tumor type. To ensure that all data were com-
parable, we generated all the primary input datasets to this study 
in-house, using consistent methodology and equipment.

We first set out to identify common transcriptional targets of on-
cogenic TFs. We reasoned that convergence of oncogenic transcrip-
tional mechanisms would most likely occur via enhancer elements 
(Fig. 1B). Key master regulators would contain multiple enhancers, 
and the tissue specificity of oncogenes would be explained by the 
fact that a given oncogenic TF activates a particular enhancer by 
collaborating with tissue-specific factors (24).

To identify direct targets of oncogenic TFs, we used chromatin 
immunoprecipitation by sequencing (ChIP-seq) to detect binding of 
estrogen receptor in breast cancer (15), androgen receptor and ETS 
Transcription Factor ERG (ERG) in prostate cancer (16), Transcrip-
tion Factor 4 (Tcf4) and β-catenin in colorectal cancer (17), GLI 
Family Zinc Finger 1 (GLI1) and Paired Box 3 (PAX3) in rhabdo-
myosarcoma (18–20), and ETS transcription factor Fli-1 Proto-
Oncogene (FLI1) in Ewing’s sarcoma (21) (fig. S1A). The number of 
peaks identified for each factor is indicated in fig. S1A. We also per-
formed expression profiling analyses to identify genes whose expres-
sion is affected by the TFs (fig. S1B). The target genes were ranked on 
the basis of the number of different ChIP-seq peaks, peak heights, and 
their proximity to the transcription start site (TSS; measured as 
ranked distance; see Materials and Methods for details). Because of 
gene duplication events, humans often have many genes whose pro-
teins have very similar if not identical functions. These proteins often 
are regulated differentially and could thus be targeted by different on-
cogenic TFs in different tumor types. To address this, we merged 
paralogous target genes to groups that are likely to have similar ac-
tivities (fig. S2A and see Materials and Methods for details).

Significance of results was assessed by permutation analysis. Ini-
tial analysis revealed that the paralog group corresponding to Rho 

Associated Coiled-Coil Containing Protein Kinases and Large Tu-
mor Suppressor Kinases (ROCK/LATS) was ranked first and the 
paralog corresponding to the MYC oncogenes—known targets of 
many oncogenic signals—was ranked third from all of the paralog 
groups (Fig. 1C). We also validated the result by restricting the set of 
genes analyzed to known regulators of the cell cycle in human cells 
(25) or human orthologs of Drosophila cell cycle regulators (26), 
which resulted in identification of MYC, ROCK/LATS kinase, and 
the cyclin-dependent kinase CDK4/6/CCRK paralog groups as com-
mon targets of lineage-specific oncogenic TFs (Fig. 1C). Analysis of 
the ChIP-seq peaks of the individual oncogenic TFs in the different 
tumor types showed that the signal was not derived from a single 
tumor type or an individual TF but represented broad-based regula-
tion of the master regulatory genes by the oncogenic TFs (fig. S2B).

Similar analysis using genome-wide association data for risk of 
any type of cancer also identified five loci, including MYC genes and 
components of the CDK4/6 system (CDK inhibitors CDKN2A/B) 
(Fig.  1D). In addition, genome-wide association study (GWAS) 
identified human leukocyte antigen (HLA) and Telomerase Reverse 
Transcriptase (TERT) loci, which were not detected in the ChIP- 
seq–based analysis. This could be because they can affect tumori-
genesis indirectly: TERT by causing chromosomal instability (27) 
and HLA by predisposing individuals for infection by tumor-causing 
viruses, such as human papillomavirus and Epstein-Barr virus (28, 29). 
Together, two sets of completely orthogonal data, one derived from 
cell lines and another from patients, show that up-regulation of the 
CDK4/6 system and the MYC family of oncogenes are the predomi-
nant common cell-autonomous outcomes of the activation of cancer 
type–specific oncogenic TFs across many forms of human cancer.

MYC also mediates the major shared transcriptional output 
of phosphorylation signaling
To identify common transcriptional mechanisms activated by phos-
phorylation signaling (Fig. 1E), we developed a set of cell lines that 
were either sensitive or resistant to common cytostatic kinase in-
hibitors. Cell lines were selected to represent major cancer types that 
have frequent kinase-activating mutations with known resistance 
mechanisms to treatments targeting the activated kinases. The 10 
different parental cell lines used represented lung, colorectal, and 
breast carcinomas and chronic myeloid leukemia (CML) and were 
driven by hyperactivation of phosphorylation signals by mutations 
in B-Raf Proto-Oncogene (BRAF), RAS, epidermal growth factor 
receptor (EGFR), Erb-B2 Receptor Tyrosine Kinase 2 (ERBB2), 
Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit 
Alpha (PIK3CA), and B cell receptor-Abelson Tyrosine-Protein 
Kinase 1 (BCR-ABL; table S2). Selected resistance mutations were 
introduced by CRISPR, and the cells were cultured with a drug 
concentration titrated to induce cell cycle arrest in the parental cell 
line. The proliferation of each parental cell line was robustly inhib-
ited by the respective cytostatic drugs, consistent with regulation of 
the CDK system by the driver oncogenes. Single-cell clones were 
established from the cells that grew in the presence of the drug. In 
developing a resistant derivative of each cell line, we made use of the 
redundancy of the phosphorylation signaling, activating known al-
ternate pathways that commonly rescue growth in the presence of a 
drug targeting a particular kinase (30). The drug treatment forces 
the resistant cell line to rely on the alternate pathway, thus enabling 
the investigation of common targets of different growth regulato-
ry pathways.
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Fig. 1. Transcriptional regulation of cell growth. (A) Hypothesized model: Diverse pathways and oncogenes drive cell cycle by targeting a limited set of downstream 
genes, which function as master regulators of the hallmarks of cancer. (B) Oncogenic TFs may share functions by binding to the enhancers of shared downstream genes. 
(C) Shared targets of oncogenic TFs were identified by ChIP-seq. Left: Top-scoring shared targets based on the number and heights of ChIP-seq peaks and their proximity 
to transcription start sites. Right: Top-scoring targets with a conserved role in cell cycle regulation (25, 26). (D) Cancer-associated single-nucleotide polymorphisms (SNPs) 
in GWAS catalog. Top 100 highest scoring SNPs are above the dashed line. Highest scoring SNPs are from four loci corresponding to TERT, HLA antigens, MYC, and 
CDKN2A/B. (E) Phosphorylation pathways may exhibit convergent functions if the downstream kinases phosphorylate (functionally) overlapping sites. (F) Cells were 
treated with varying concentrations of drugs (0 to 500 nM), and scRNA-seq was performed at 2-, 6-, 12-, and 24-hour time points. Genes were ranked for each cell line pair 
based on the explanatory power of drug treatment in the sensitive cells in a multiple regression model. Top genes exhibited significant overlap between cell lines and 
were highly enriched in MYC targets (see Materials and Methods). (G) g:Profiler (102) enrichment analysis of the common targets using Benjamini-Hochberg multiple 
hypothesis correction method. Ribosome biogenesis, Gene Ontology (GO):0042254; translation factors, WP:WP107; ribosomal RNA (rRNA) processing, REAC:R-HSA-72312; 
Nop56p-associated pre-rRNA complex, CORUM:3055; translation, GO:0006412. (H) Expression of common target genes as a function of drug concentration at 2-, 6-, and 
12-hour (h) time points. Intersection of the top 500 genes is shown for sensitive cell lines. Red, MYC; dark blue, MYC targets; cyan, ribosome biogenesis (GO:0042254); 
yellow, MYC target involved in ribosome biogenesis; *, NOLC1. FC, fold change. The data in (F) to (H) were generated from NCI-H1975, RKO, HCT116, and KBM7/HAP1 cells 
(table S2).
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We first treated a set of sensitive and resistant cell lines represent-
ing lung and colorectal cancer and CML with cytostatic kinase in-
hibitors targeting EGFR, mitogen-activated protein kinase (MAPK) 
kinase, and BCR-ABL. Cells treated with different drug concentra-
tions for different times were labeled with DNA tags (Fig. 1F and see 
Materials and Methods), pooled, and subjected to single-cell RNA 
sequencing (scRNA-seq). Gene expression changes were modeled as 
a function of drug concentration, treatment duration, presence of 
resistance mutations, and cell cycle phase (see Materials and Meth-
ods). All drug treatments of the sensitive cell lines induced a clear 
cell cycle arrest–related transcriptional response (fig. S3A). To de-
tect other responses, we determined the cell cycle phase for each cell 
and included it in the regression model to separate the direct effects 
of the drugs from indirect effects caused by cell cycle arrest, includ-
ing G1 CDK signaling and transcriptional regulation by their down-
stream targets, the E2F family TFs. The genes regulated predominantly 
in the parental drug–sensitive cells by the different cytostatic drugs 
were highly overlapping between the different cell line pairs and 
heavily enriched in MYC targets (Fig. 1F and see Materials and 
Methods). Drug treatment resulted in G1 cell cycle arrest starting at 
12 to 24 hours. In the resistant cell lines, cell cycle arrest was incom-
plete and/or required a higher drug dose (fig. S3A).

Comparison across the cell line pairs resulted in identification of 
genes that were regulated before the cell cycle arrest in a highly con-
vergent manner in the different cell lines treated with distinct cyto-
static drugs (table S2). The genes were heavily enriched in regulators 
of translation and ribosome biogenesis (Fig. 1G), consistent with 
previous observations that MYC regulates translation (31, 32). The 
regulation of MYC preceded the down-regulation of its targets, sug-
gesting that most shared transcriptional responses observed after 
the drug treatments were dependent on MYC (Fig. 1H and fig. S3B). 
Ribosome biogenesis factors, including nucleolar and coiled-body 
phosphoprotein 1 (NOLC1), were regulated with slightly faster ki-
netics on average than the rest of the MYC targets (Fig. 1H and 
fig. S3, B and D, 6-hour time point). Only a few of the genes ap-
peared to be regulated independent of MYC. These included DUSP6, 
ETV4, and ETV5, which were down-regulated, and the negative 
regulator of ribosome biogenesis PNRC1 and two noncoding RNAs 
(MALAT1 and NEAT1), which were up-regulated. The early down-
regulation of DUSP6 and MYC is most likely due to the correspond-
ing mRNAs having a shorter half-life than the mRNAs of the other 
down-regulated genes (33) (fig. S3C).

The role of MYC in oncogenic signaling is well established 
(34, 35), but what is unexpected is that MYC is almost exclusively 
driving the common, cell cycle–independent transcriptional re-
sponse to kinase inhibitors. In summary, the results obtained with 
three complementary approaches indicate that most transcriptional 
consequences of oncogenic signaling that are common to multiple 
cancer types are either mediated by the E2F family of cell cycle regu-
lators or by the MYC family of oncogenes.

Common phosphorylation targets across human 
cancer types
In addition to transcriptional output, it is well established that post-
translational regulation has also more direct effects on protein activi-
ties [see, for example, (36–38)]. To study these nontranscriptional 
effects of growth signaling, we assessed the kinetics of the transcrip-
tional changes and cell cycle arrest in our scRNA-seq data and performed 

proteomics analyses with ≤2-hour time points, before most of the 
transcriptional effects took place (Fig. 2A and fig. S3, A and B). On 
the basis of the scRNA-seq, cell cycle, and cell viability analyses, we 
selected drug concentrations that only caused cell cycle arrest in the 
drug-resistant derivative of each cell line. We performed phospho-
proteomic characterization of the cell lines listed in table S2 using 
multistage mass spectrometry (MS3) with synchronous precursor 
selection (SPS) and tandem mass tags (TMTs), identifying more 
than 48,000 phosphopeptides in total (median, 19,771 per cell line) 
at <1% false discovery rate (FDR).

Analysis of common peptides, whose phosphorylation was altered 
by drug only in the parental cell lines but not in the corresponding 
resistant derivative, revealed multiple phosphorylation sites in pro-
teins involved in metabolism, ribosome biogenesis, and translation. 
Several known phosphoregulatory sites were identified, validating 
our approach (fig. S4, A and B). In addition, we found many shared 
downstream phosphorylation events, many of which affected essen-
tial genes or genes linked to cell proliferation (table S3).

Phosphorylation events target ribosome biogenesis before 
down-regulation of gene expression
The semirandom peptide detection inherent to MS using data-dependent 
acquisition results in missing data between sample subsets, which po-
tentially limits the sensitivity of the analysis conducted on individual 
phosphopeptides. To improve the sensitivity, we next identified in-
creases and decreases in phosphorylation affecting entire protein 
complexes or pathways (see Materials and Methods). Although we can-
not rule out that other phosphorylation events are also associated with 
cell proliferation, this approach enabled the identification of several 
processes associated with proliferation across different cancer types. 
After drug treatment, we observed increased phosphorylation in the 
large nucleolar proteins involved in ribosomal RNA (rRNA) process-
ing and splicing (Fig.  2, B and C, and fig.  S4, C and D). This up-
regulation occurred mostly in the acidophilic phosphorylation sites 
and serine clusters, suggesting a common mechanism for phosphoryla-
tion of these proteins (Fig. 2, D and E). In the case of ribosome biogen-
esis, these phosphorylations occurred mainly in the serine-rich acidic 
patches of the known rRNA synthesis factors Treacle protein (TCOF1) 
and its paralog NOLC1 (Fig. 2F). Notably, many of these sites have pre-
viously been shown to undergo pyrophosphorylation (fig. S5A) (39).

NOLC1 was also identified as one of the most prominent com-
mon MYC targets regulated transcriptionally by cytostatic drugs in 
our single-cell transcriptomics data (Fig. 1H and fig. S3, B and D), 
raising the possibility that it acts as a node integrating transcrip-
tional and posttranslational signals. Therefore, we analyzed the reg-
ulation of NOLC1 and TCOF1 more closely (fig. S3D) and noticed 
that NOLC1 and TCOF1 also exhibited similar transcriptional re-
sponses to the drug treatments. Phosphorylation changes of both pro-
teins occurred earlier than their transcriptional regulation. Increased 
phosphorylation in the acidophilic sites was short lived, whereas the 
dephosphorylation of several sites in the conserved C termini of these 
proteins persisted in the 24-hour time point (Fig. 2F and fig. S5, B 
and C). Ribosomal protein phosphorylation was reduced on average, 
and this change was also prominent at a later time point of 24 hours, 
together with down-regulated phosphorylation of ribosome bio-
genesis factors (fig. S5, B and C). Together, these findings suggest 
that the regulation of ribosomes is a key outcome of growth signal-
ing in the studied cancer types.

D
ow

nloaded from
 https://w

w
w

.science.org on A
ugust 27, 2025



Kauko et al., Sci. Adv. 11, eadt1798 (2025)     20 August 2025

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

5 of 20

2 h 2 h
KEGG CORUM

A

B

1. Ribosome biogenesis
in eukaryotes

2. SRm160/300,
SRm160-SRm300

Ribosome biogenesis

Ribosome 

Cytoskeleton
Hippo
Pluripotency
Ras
ErbB
PLC

RTK, RAS/MAPK, 
and PI3K/mTOR
pathways targeted 
by drugs

Splicing

Ribosome 

APC

Dephosphorylated in
nonproliferating cells

Up-regulated in
nonproliferating cells

Dephosphorylated in
nonproliferating cells

Up-regulated in
nonproliferating cells

Log FCLog FC

Nuclear transport

MYC	expression

MYC	targets

Cell	cycle	

0								2																			6																												12		Time	(h)

Phosphoproteomics

C

D

E
NOLC1

TCOF1

M
ed
ia
n 
lo
g 2
 F
C

M
ed
ia
n 
lo
g 2
 F
C

LIS1 homology motif
Serine-rich acidic regions
SRP40 C-terminal domain
Treacle C-terminal domain

Phosphorylation at 2 h
Phosphorylation at 24 h

Amino acid number 

FPhosphorylation site

SRm160/300
SRm160-SRm300

1.
2.

1 200 400 600 800 1000 1200 1400

1

0

-1

-2

2

1

0

-1

2

0 21-10

200

400

600

Median log2 FC

Median log2 FC
0 21-1 3-2-3

-2

0

20

40

60

80

Lo
g 
P
 v
al
ue

0 0.25-0.25-0.5

0

5

10

200

400

600

Size

0

0 0.4-0.4

5

10

15

20

25

Lo
g 
P
 v
al
ue

500

Size

1000

1500

FDR 1%

FDR 1%
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nonproliferating (parental drug–sensitive cells) and proliferating cells (nontreated parental and resistant cells). x axis shows the position of the phosphorylation site in 
NOLC1 and TCOF1 proteins. Phosphorylated serine-rich acidic regions are indicated with an arrowhead. LisH, LIS1 homology. In (B) to (H), the data were generated from 
NCI-H1975, RKO, HCT116, LoVo (both resistance mechanisms), MCF-7 (temsirolimus, both resistance mechanisms), and KBM7/HAP1 (both drugs) cell lines as presented in 
table S2. In (B) and (C), P values were calculated using two-tailed one-sample t test, and dashed line indicates 1% Benjamini-Hochberg FDR.
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Protein interaction and metabolomic analysis identify 
common targets in ribosome biogenesis and metabolism
We next performed a proteome integral solubility alteration (PISA) 
assay (Fig. 3A) (40) in the same three adherent cell line pairs used in 
the scRNA-seq experiments to identify proteins, whose interactions 
change in response to cytostatic drugs. Consistent with the phos-
phorylation analysis, we detected a change in the soluble amounts of 
ribosome biogenesis regulators after 2 hours of drug treatment 
(Fig. 3, B and C, and fig. S6, A and B). Concurrent changes in phos-
phorylation and protein solubility in the same ribosome biogenesis–
associated protein complexes (Fig. 3D) suggest that the observed 
phosphorylation events may regulate protein-protein interactions 

and ribosome stability. We also detected effects on metabolic path-
ways (Fig. 3B and fig. S6A).

To further characterize the metabolic state of the cells after 
drug treatment, we performed metabolomics analysis using liquid 
chromatography (LC)–MS. A targeted characterization of polar 
metabolites in selected cell lines 24 hours after drug treatment re-
vealed a decrease in the nucleotide monophosphates—uridine 
5′-monophosphate (UMP), adenosine 5′-monophosphate (AMP), 
and guanosine 5′-monophosphate (GMP)—and altered glycolytic 
flux based on accumulation of glucose and bisphosphoglycerate and 
decrease in fructose-6-phosphate (Fig. 4A) that mainly occurred 
in the drug-sensitive cells. We also observed inhibition of de novo 
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Fig. 3. Protein interaction changes in proliferating cells. (A) PISA assay principle. (B) Volcano plot: Average differential thermal stability change in PISA assay between 
drug-resistant and -sensitive cells in all KEGG pathways excluding the KEGG DISEASE category is shown as log fold change on x axis. (C) Volcano plot: Average differential 
thermal stability change in PISA assay between drug-resistant and -sensitive cells in all CORUM database protein complexes is shown as log fold change on x axis. 
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nucleotide synthesis based on a decrease in levels of UMP, the key in-
termediate for synthesis of pyrimidine nucleotides via the de novo 
pathway (Fig. 4A, bottom right).

The accumulation of glucose suggested that the impairment in 
glycolysis could be due to decrease in activity of hexokinase, an en-
zyme that controls one of the rate-limiting steps of glycolysis. The 
expression of the gene for hexokinase 2 (HK2) was also moderately 
down-regulated by the chemotherapeutic drugs (fig. S7). However, 
the relatively rapid changes in glycolytic metabolites, and the solubility 
change of components of metabolic pathways already at 2 hours 
(Fig. 3B) suggested that some effects on metabolism could be medi-
ated by direct posttranslational regulation. We therefore tested 
whether phosphorylation of HK2 contributed to the observed ef-
fects. We measured the requirement of known HK2 phosphoryla-
tion sites using competitive precision genome editing (CGE) assay 
(Fig. 4, B to D) (41). CGE assay uses silent mutations as sequence 
tags that enable lineage tracing (Fig.  4B). Although variance be-
tween lineages is high because of a large number of measured lin-
eages, the aggregate statistical power of CGE is very high because 
the outlier lineages have a smaller effect on the median than the sum 
of the lineage read counts (41, 42). Therefore, it can be used to mea-
sure small differences with robust confidence estimates using a rela-
tively short dropout experiment, where the effect size is still limited. 
We did not detect an effect on cell proliferation by mutation of HK2 
residue T473, whose phosphorylation has been reported to affect 
HK2 activity (43, 44). However, this phosphorylation is not found in 
the publicly available MS datasets, whereas phosphorylation in the 
nearby tyrosine residue (Y461) is commonly observed (45). Muta-
tion of Y461 in HK2 inhibited growth of HAP1 cells (Fig. 4D), im-
plicating phosphorylation of Y461 in regulation of HK2 activity. 
These results establish that transcriptional control and posttransla-
tional regulation act in concert to regulate both ribosome biogenesis 
and metabolism.

NOLC1 and TCOF1 define the proliferative compartment in 
human cancer
Our results described above establish that in addition to the cell cy-
cle, the main processes that associate with cell proliferation in differ-
ent types of cultured human cancer cells are ribosome biogenesis 
and translation. To determine whether this correlation is also ob-
served in human cancer, we performed proteomic analyses of squa-
mous cell carcinoma (SCC) of the tongue, a model that allows clear 
separation of proliferative and nonproliferative compartments of 
genetically similar cancer cells (Fig. 5A). In oral SCCs, cells in the 
inferior border of the tumor, the invasive front, have high prolifera-
tive activity (46, 47). Comparison of the invasive front and the cen-
tral tumor enabled the identification of processes that are specific to 
proliferating cancer cells.

Biopsies were collected from patients with tongue cancer treated 
with hemiglossectomy, which results in a large surgical margin en-
abling the collection of a biopsy spanning the invasive front 
(Fig. 5A). Fresh frozen biopsies were cut into 500-μm sections par-
allel to the invasive fronts, enriching the invasive front cells to spe-
cific sections. Protein expression specific to proliferating cells was 
identified by correlation profiling (48), where distributions of pro-
teins across the slices were compared to known proliferation mark-
ers [Marker Of Proliferation Ki-67 (KI-67), Minichromosome 
Maintenance Complex Components 2-7 (MCM2-7), and proliferat-
ing cell nuclear antigen (PCNA)] (46, 47). The proliferation markers 

were highly enriched in the sections containing the invasive front 
(Fig. 5B). On the other hand, adjacent normal tissue exhibited high 
expression of proteins specific to skeletal muscle cells (49), as would 
be expected from the cells of the tongue (Fig. 5B). TCOF1 and, to a 
lesser extent, its paralog NOLC1 exhibited an expression profile 
similar to proliferation markers, with the highest expression in the 
tumor invasive front, whereas ribosomal protein expression was 
highest in the adjacent normal tissue (Fig. 5C). This suggests that 
while both proliferating tumor cells and muscle cells require high 
protein synthesis capacity, the regulation of ribosome production 
has distinct, potentially therapeutically exploitable, characteristics 
in proliferating cancer cells, exemplified by elevated expression of 
TCOF1 and NOLC1.

Phosphorylation of NOLC1 is required for cancer 
cell proliferation
Our results establish that the ribosome biogenesis regulators includ-
ing NOLC1 and TCOF1 correlate with cell proliferation both in cul-
tured cells representing multiple cancer types and in human oral 
SCC tumors. The coordinated changes in phosphorylation and pro-
tein solubility that correlate with cell proliferation suggest that at 
least some of the events might be mechanistically important for driv-
ing cell proliferation in response to phosphorylation signaling. To 
test this, we selected a set of phosphorylation sites, including NOLC1 
T607 and T610 and TCOF1 S1410, for detailed functional validation 
using CGE assay based on the following criteria: (i) essentiality of the 
protein, (ii) conservation of the phosphorylation site, (iii) robust de-
tection of the phosphopeptide in multiple different cancer types, and 
(iv) consistent regulation between proliferating and nonproliferating 
cells (fig. S8). On the basis of the recent analysis by Johnson et al. 
(50), the selected sites are phosphorylated efficiently by multiple 
kinases, which is consistent with the notion that they are targets of 
multiple growth regulatory pathways. We next measured the require-
ment of the phosphorylation sites using the CGE assay.

Control experiments established that some phosphorylation events 
that correlate with cell proliferation are not causative. For example, 
mutation of well-studied phosphorylation sites (S235 and S236) of 
ribosomal protein S6 had no effect, consistent with earlier observa-
tions (51) (Fig. 6A). Analysis of phosphorylation sites in other pro-
teins involved in translation and mechanistic target of rapamycin 
(mTOR) signaling also revealed that a mutation of S183 in AKT1 
Substrate 1 (AKT1S1) had no effect. A minor effect was detected by 
mutation of another classical phosphorylation site, Eukaryotic Trans-
lation Initiation Factor 4E Binding Protein 1 (4E-BP1) T37 (Fig. 6A). 
We also found that a phosphomimetic mutation of S704 in Eukary-
otic Translation Initiation Factor 4 Gamma 1 (EIF4G1) decreased cell 
proliferation (Fig. 6A), consistent with the up-regulation of S704 
phosphorylation in response to cytostatic drugs (fig. S8).

Stronger effects were detected by mutating phosphorylation sites 
in proteins involved in two other processes, splicing (Fig. 6B) and 
ribosome biogenesis (Fig. 6C), that were rapidly modulated by cyto-
static drugs. In particular, phosphorylation sites in two regulatory 
components of RNA polymerase I, NOLC1 and RNA Polymerase I 
Subunit G (RPA34), had a strong negative impact on cell prolifera-
tion (Fig. 6C). Notably, both NOLC1 and its paralog TCOF1 were 
also regulated by MYC, and mutation of the MYC binding site in the 
promoter of either gene also caused a decrease in cell proliferation 
(Fig. 6, D and E), establishing that NOLC1 regulation at both the 
transcriptional and posttranslational level is required for cell 
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Fig. 4. Metabolic changes in proliferating cells. (A) Quantification of polar metabolites by LC-MS/MS. Means ± SEM for eight cell line pairs is shown. Top left: Early gly-
colytic pathway metabolites glucose, fructose-6-phosphate, and fructose-1,6-bisphosphate. Bottom right: Nucleoside mono- and triphosphates. The data were generated 
from A549, NCI-H1975, RKO, HCT116, K562, MCF-7 (palbociclib), T47D, and KBM7/HAP1 (both drugs) cell lines as presented in table S2 and corresponding to phosphopro-
teomic samples. CMP, cytidine 5′-monophosphate; CTP, cytidine 5′-triphosphate; UTP, uridine 5′-triphosphate; GTP, guanosine 5′-triphosphate; ATP, adenosine 
5′-triphosphate. (B) CGE assay. Phosphorylation sites were edited using prime editor or Cas9 with single-stranded oligodeoxynucleotides (ssODNs) as repair template for 
homology-directed repair. For each editing reaction, pegRNA or ssODN library consisted of sequences that restore the phosphorylatable residue, introduce nonphos-
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cent codons to enable lineage tracing. UMI, unique molecular identifier. (C) Consistent with a previous publication (43), the effect of mutating Y15 phosphorylation site in 
the CDK1 gene on fitness of HAP1 cells. (D) The effect of mutating Y461 and T473 phosphorylation sites in the HK2 gene on the fitness of HAP1 cells. In (C) and (D), log2 
ratios of day 8/day 2 are shown for each sequence tag pair after calculating the ratio of read counts for the mutated versus the original sequence at both time points. Red 
lines represent the median values, and P values from Wilcoxon signed-rank test are shown for each experiment.
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proliferation. Notably, the phosphorylation of T607 in NOLC1 is 
conserved all the way to invertebrates such as Drosophila (Fig. 6F) 
(52), suggesting that the identified mechanism of regulation is con-
served across species.

DISCUSSION
Intuitively, the diversity of driver oncogenes and the heterogeneity 
of individual tumor cells suggest that the downstream regulatory net-
work of cancer would have a very highly complex structure, which 
would vary extensively between cancer types and between cell clones 
or even individual cells within a tumor. However, as a large number 
of genes need to be precisely controlled to drive cell proliferation and 
division, it is unlikely that all upstream drivers would use distinct 
molecular mechanisms to target the same set of effector genes 
(Fig. 6G). Here, we hypothesized that driver genes would regulate a 
smaller set of master regulators of the cancer phenotypes. To identify 

these master regulators in an unbiased and comprehensive manner, 
we investigated the common outcomes of oncogenic transcriptional 
and posttranslational regulation in major forms of human cancer 
that constitute 46% of the worldwide cancer mortality (53). We 
found that diverse types of upstream oncogenes, including the pro-
tein kinases and TFs that contribute to major forms of human cancer 
converge to activate a single common downstream growth regula-
tory process. Our findings indicate that the gene regulatory network 
shared by many cancers has an hourglass shape, with a large number 
of potential driver genes converging on a small number of master 
regulators and then diverging again into a large number of effector 
genes that underpin the cancer phenotype. Unlike the upstream 
drivers, which are typically tumor type specific, the master regula-
tors and their effector genes appear to be common to many major 
forms of cancer. Because of the diversity of cancer types, we cannot 
rule out the possibility that some tumor types use downstream 
mechanisms different from those identified here. However, of the 
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Fig. 5. Proliferation associated changes in HNSCC invasive front. (A) HNSCC invasive front biopsies. Biopsies were collected from lateral tumors of the tongue following 
hemiglossectomy. Each biopsy was cut into 500-μm slices parallel to the invasive front, and slices of the same tumor were analyzed as one TMT multiplex. (B) Expression 
of hypoxia markers [Solute Carrier Family 2 Member 1 (GLUT1) and Pyruvate Dehydrogenase Kinase 1 (PDK1)], skeletal muscle–specific proteins (49), and proliferation 
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coxon signed-rank test are shown for each experiment.

D
ow

nloaded from
 https://w

w
w

.science.org on A
ugust 27, 2025



Kauko et al., Sci. Adv. 11, eadt1798 (2025)     20 August 2025

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

11 of 20

remaining tumor types that contribute a substantial fraction to 
overall cancer mortality, pancreatic cancer is commonly driven by 
RAS/MAPK pathway, and ovarian cancers harbor frequent MYC 
amplifications. Therefore, we expect that our findings can be gener-
alized to the majority of human cancers.

The concept of master regulator has been proposed previously by 
others (54–56). For example, Paull et  al. (57) used computational 
approaches to identifying more than 400 master regulators from 
The Cancer Genome Atlas transcriptomics data encompassing near-
ly 10,000 samples from multiple cancer types. The large number of 
master regulators identified by this approach reflects the fact that it 
is very difficult to determine the sequence of regulatory events from 
static transcriptomics data. Although Paull et al. (57) identified 
MYC and E2F1 as some of the most prominent among many master 
regulators, they also classified many proteins acting either upstream or 
downstream of these key regulators as master regulators. In contrast, 
our approach considers direct TF binding (e.g., ChIP-seq) and uses 
time-series data (Fig. 1H and fig. S3B), enabling inference of direct regu-
latory events and decoupling growth regulation from cell cycle phase–
specific gene expression (single-cell transcriptomics time course). As a 
consequence, our approach results in identification of far fewer key 
master regulators than methods based on static transcriptomes.

Of the commonly recognized 10 cancer hallmarks (23), our ap-
proach detected five: (i) growth/proliferation and (ii) evasion of 
growth suppression (MYC and CDK4/6/E2F axis), (iii) immortality 
(TERT), (iv) DNA damage, and (v) immune mechanisms. The im-
mune signal was an association between HLA locus variants and 
cancer; this association is mainly derived from a small subset of can-
cers that share an infectious etiology. The absence of common regu-
latory mechanisms for other cancer hallmarks could be due to 
posttranslational regulation distinct from phosphorylation or tissue-
specific mechanisms. Consistent with the tissue specificity model, it 
is well established that different tumor types preferentially metasta-
size to different organs, and only some of this can be explained by 
anatomical considerations (58). Regarding invasion, some recent 
evidence from intestinal tumors suggests that some aspects of inva-
sion could also be driven by tissue-specific mechanisms. In particu-
lar, Adenomatosis Polyposis Coli Tumor Suppressor (APC) null 
intestinal epithelial cells secrete the WNT inhibitor NOTUM, which 
induces differentiation of normal stem cells (59). Growth of APC 
null tumors secreting NOTUM induces a transcriptional response 
similar to that induced by tissue damage in neighboring normal tis-
sue (60), suggesting that invasion of tumors may depend on damag-
ing normal tissue and aberrant wound repair mechanisms. Consistent 
with tissue specificity of invasion, metastases can also show less inva-
sive phenotype than primary tumor. For example, invasiveness of 
liver metastases of colorectal cancer and melanoma are not fully de-
fined by the invasiveness of the primary tumor; the metastases can be 
surrounded by microcapsule-like structure or a complete ring of fibro-
sis isolating them from the liver, reminiscent of structures that com-
monly form around benign tumors (61, 62). This hypothesis that cancer 
hallmarks could be divided to those having common mechanisms and 
those acting in a tissue-specific manner warrants further study.

The main growth regulatory processes activated by the oncogen-
ic mechanisms analyzed here are metabolism, translation, and ribo-
some biogenesis (Fig.  6H). Translation is affected both through 
phosphorylation of multiple components of the translation machinery 
and by transcriptional control of multiple initiation factors by the 
master regulator MYC. Similarly, in ribosome biogenesis, the direct 

effects of phosphorylation signaling appear to affect proteins such as 
RPA34 and NOLC1 that are involved in ribosomal RNA synthesis, 
whereas the indirect action via MYC leads to up-regulation of mul-
tiple proteins involved in ribosome biogenesis. MYC is known to 
increase protein synthesis by inducing expression of multiple genes 
involved in ribosome biogenesis and translation (31, 32, 63, 64). Our 
findings show that the transcriptional control by MYC and post-
translational regulation by oncogenic kinase signaling act in concert 
to increase both the specific activity and concentration of compo-
nents of protein synthetic machinery. In particular, we identified a key 
downstream node, NOLC1, whose activity is regulated both tran-
scriptionally and posttranslationally. Reverse genetic experiments 
using CGE established that both types of regulation of NOLC1 are 
independently required for cell proliferation, highlighting the im-
portance of this process (Fig. 6H).

The identified feed-forward loop targeting NOLC1 has implica-
tions to the known phenomena of oncogene cooperation. It is well 
established that MYC cooperates with RAS in cellular transforma-
tion. Our results suggest that the cooperative effect is quantitative in 
nature, where neither RAS/MAPK nor MYC alone can optimally 
activate NOLC1, as both transcriptional and posttranslational regu-
lation is required. Given that different tissues and cell types have 
different endogenous levels of RAS/MAPK and MYC activity (45), 
our results also suggest that in a given cell type, either MYC or RAS/
MAPK would be rate limiting for tumorigenesis. This quantitative 
effect could thus also contribute to the phenomenon called cancer 
hyperbola, i.e., the tendency of different cancer types to have either 
frequent copy number alterations (that could activate MYC) or 
point mutations (that commonly activate kinases) (65, 66).

The primary role of ribosome biogenesis for human cell prolifera-
tion and cancer is similar to simpler organisms, such as Escherichia 
coli and yeast, where cell growth rate and ribosome concentration are 
linearly correlated (67, 68). Growth signals lead to an initial increase 
in ribosome biogenesis, followed by broader protein synthetic and 
anabolic activity. Our results suggest that multicellular organisms 
have evolved additional control mechanisms to the old circuit that 
drives growth in response to nutrients. These mechanisms limit 
growth by hierarchical organization of cells into stem cells and dif-
ferentiated cells (69) and by cell-to-cell signaling mechanisms that 
are required to specify or reinforce the proliferative state of specific 
cell types within particular tissues.

Identification of tumor type–specific oncogenic drivers has en-
abled development of “mechanism-based” antineoplastic agents that 
target specific upstream processes activated in particular tumor types, 
for example, by directly binding to a single oncogenic protein kinase 
(70). These targeted drugs are safe and effective but, in almost all cases, 
lead to development of resistance due to cancer heterogeneity—the 
presence of resistant subpopulations harboring mutations that prevent 
drug binding or activating another upstream pathway driving the 
regrowth of the tumor. Despite the extreme heterogeneity of indi-
vidual cancer cells that facilitates resistance to therapy via rewired 
upstream pathways or mutated driver genes, our findings show 
that behind all the complexity, there is a molecular commonality 
of downstream mechanisms shared by many forms of human can-
cer. Elevated MYC expression has been associated with resistance 
to various therapies in many cancers, including some that were not 
covered by our study, suggesting that our findings on the conver-
gence of oncogenic transcription to MYC can be generalized to 
other forms of human cancer (34).
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Our findings have important implications for cancer therapy and 
prevention, as they suggest that it is possible to develop a novel 
class of broad-spectrum antineoplastic agents that do not have the 
severe limitations of current chemotherapies. Existing antimetabo-
lites and conventional chemotherapeutics are severely toxic, in part 
because they do not target specific proteins or pathways activated in 
tumors. Instead, they nonspecifically damage DNA and/or target 
multiple processes that are related to but not identical to the mecha-
nisms uncovered here. For example, the commonly used chemo-
therapeutic 5-fluorouracil not only targets thymidylate synthase, 
an enzyme that acts in de novo thymidylate synthesis pathway, but 
also causes DNA damage due to misincorporation of 5-fluoro-2′- 
deoxyuridine into DNA (71). Our results suggest that compounds 
that decrease the level of ribosome biogenesis or increase ribophagy, 
such as RNA polymerase I inhibitors (72, 73), would more directly 
target a key consequence of oncogenic mutations. Furthermore, 
given the fact that genetic variants that decrease the activity of the 
pathways identified here decrease cancer risk but have no known 
harmful effects (Fig. 1D), a low-dose or partial antagonist targeting 
the pathways might act as a chemopreventive agents, decreasing the 
incidence of a broad spectrum of human cancers.

MATERIALS AND METHODS
Cell lines
HAP1 (#C631, RRID:CVCL_Y019) and KMB-7 (#C628, RRID:
CVCL_A426) cell lines were obtained from Horizon Discovery and 
maintained in low-density cultures in Iscove’s modified Dulbecco’s 
medium according to the vendor’s guidelines. RKO (RRID:CVCL_ 
0504), HCT116 (RRID:CVCL_0291), LoVo (RRID:CVCL_0399), 
BT-474 (RRID:CVCL_0179), T47D (RRID:CVCL_0553), MCF-7 
(RRID:CVCL_0031), NCI-H1975 (RRID:CVCL_1511), A549 (RRID: 
CVCL_0023), K562 (RRID:CVCL_0004), CRL-2061 (RRID:CV
CL_0041), VCaP (RRID:CVCL_2235), and SK-N-MC (RRID:CV
CL_0530) cells were purchased from American Type Culture 
Collection and cultured according to the vendor’s guidelines in the 
medium specified by the vendor. To sensitize MCF-7 cells to temsi-
rolimus, cells were cultured in reduced fetal bovine serum (FBS; 5%) 
and without insulin. Before ChIP, MCF-7 cells were hormone 
starved for 48 hours and subsequently mock-treated (minus ligand) 
or stimulated for 1 hour with 100 nM estradiol (E2). GP5d cells were 
obtained from Sigma-Aldrich (95090715) and cultured in Dulbec-
co’s modified Eagle’s medium (DMEM) supplemented with 10% 
FBS, 2 nM l-glutamine, and 1% penicillin-streptomycin. Wild-type 
and Myc-null Rat1 fibroblasts (74) were a gift from J. Sedivy, Brown 
University, and R. Bernards, Netherlands Cancer Institute. The cells 
were maintained in DMEM with 10% FBS and antibiotics.

Phosphatase and Tensin Homolog (PTEN) knockout (RKO, 
HCT116, LoVo, BT-474, NCI-H1975, and A549), RB Transcription-
al Corepressor 1 (RB1) knockout (T47D and MCF-7), Neurofibro-
min 1 (NF1) knockout (MCF-7 and K562), and PIK3CA H1047R 
mutant (LoVo) cell lines were generated using Alt-R CRISPR-Cas9 
from Integrated DNA Technologies according to the vendor’s guide-
lines. Briefly, crRNA and tracrRNA duplex complexed with Cas9-HiFi 
protein was transfected using CRISPRMAX (Invitrogen). Trans-
fection was verified after 2 days by imaging the fluorescence from the 
atto550 label in the tracrRNA. Single-stranded oligod‑eoxynucleotide 
(ssODN) was used as a homology-directed repair template for 
PIK3CA H1047R mutation (table S4) at 3 nM concentration. All 

crRNA sequences are listed in table S4. Resistant cells were selected 
by culturing with a drug concentration titrated to induce cell cycle 
arrest in the parental cell line. Single-cell colonies were cultured 
from cells that grew in the presence of the drug, and resistance mu-
tation was verified by Sanger sequencing. Unless stated otherwise, 
drug concentrations used in the experiments were as follows: RKO, 
20 nM trametinib; HCT116, 8 nM trametinib; LoVo, 20 nM tra-
metinib; BT-474, 20 nM lapatinib; NCI-H1975, 100 nM osimer-
tinib; A549, 100 nM trametinib; T47D, 200 nM palbociclib; MCF-7, 
200 nM palbociclib or 20 nM temsirolimus; KBM-7/HAP1, 300 nM 
imatinib or 80 nM trametinib; K562, 300 nM imatinib.

Human participants
Collection of head and neck SCC (HNSCC) invasive front samples 
was approved by the Ethics Committees of Southwest Finland (ETMK 
166/1801/2015) and Turku University Central Hospital (TO6/022/17) 
and was conducted according to the principles of Declaration of 
Helsinki. Informed consent was obtained from the participants. 
Biopsies were taken from the resected tumors without compromising 
the routine diagnostics, and the orientation of the biopsy was marked 
with a stitch before snap-freezing the sample. The participants’ sex, 
gender, race, ethnicity, or age is not reported because the analyses 
compare different regions of the same tumor, and there are no con-
clusions on the differences between patients.

Chromatin immunoprecipitation by sequencing
Antibodies to Tcf4 (clone 6H5-3, Exalpha Biologicals), β-catenin 
(rabbit polyclonal antibody: H-102, Santa Cruz Biotechnology, 
RRID:AB_634603), PAX3 (rabbit polyclonal antibody, catalog no. 
CA1010, Calbiochem), GLI1 (rabbit polyclonal antibody, H-300, 
Santa Cruz Biotechnology, RRID:AB_2111764), estrogen receptor 
(rabbit polyclonal antibody, HC-20, Santa Cruz Biotechnology, 
RRID:AB_631471), p300 (rabbit polyclonal antibody, N-15, Santa 
Cruz Biotechnology, RRID:AB_2293429), RNA polymerase II (rabbit 
polyclonal antibody, H-224, Santa Cruz Biotechnology, RRID:
AB_2268548), α-H3K4me1 (rabbit polyclonal antibody, ab8895, 
Abcam, RRID:AB_306847), and normal immunoglobulin G (IgG) 
(mouse, sc-2025; rabbit, sc-2027; Santa Cruz Biotechnology, RRID:
AB_737182 and RRID:AB_737197) were used in ChIP. ChIP-seq 
was performed as described in Tuupanen et al. (75)

The ChIP-seq data were analyzed as described in Wei et al. (76). 
Sequencing reads were mapped to the NCBI36 release of the human 
genome using Maq version 0.6.5 (77). Only reads with a mapping 
quality score  of ≥30 were accepted. Reads were then extended to 
estimated fragment length, and peak height was determined at each 
position as the number of overlapping extended reads. For each 
peak of height eight or more, the total number of sequences in the 
continuous region of four or more overlapping sequences was com-
pared to the number of sequences in the same region in the IgG 
control. The probability of observing the difference between the se-
quence counts in the ChIP sample and IgG control by chance was 
estimated using the Winflat program (78), and peaks that had prob-
ability smaller than 0.05 (without multiple hypothesis testing cor-
rection) were selected for further analysis.

Small interfering RNA treatment and expression profiling
For small interfering RNA (siRNA) knockdown, predesigned Flexi-
Tube siRNAs (QIAGEN) for the TFs targeted in ChIP, as well as con-
trol siRNA (SI03650325, QIAGEN), were transfected into cells using 
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HiPerFect Transfection Reagent (catalog no. 301704, QIAGEN). 
Transfections were performed in two steps with 24-hour interval, 
and the cells were harvested 48 hours after the transfections. Expres-
sion profiling of endoplasmic reticulum was done by adding either 
100 nM estradiol (E2) or mock ligand (ethanol) to MCF-7 cells 4 hours 
before lysis, and expression profiling of Androgen Receptor (AR) by 
adding 1 nM synthetic androgen methyltrienolone to VCaP cells. 
The cells were hormone starved for 48 hours before ligand addi-
tion. Total RNA were prepared by QIAshedder (catalog no. 79656, 
QIAGEN) and QIAGEN RNeasy Kit (catalog no. 74104). Expression 
profiling was performed using Affymetrix human genome U133p-
lus2.0 arrays. The background noise was then corrected according to 
the Robust Multi-Array expression measure using sequence infor-
mation (GCRMA) method (79). The probe sets were subsequently 
filtered for expression measurements to have a value of 100 fluores-
cence units in at least 25% of the samples. Differential expression 
analysis was performed by fitting a linear model as described in the 
Limma package (80); P values were adjusted according to Benjamini 
and Hochberg’s method to control the FDR. Probes showing signifi-
cant differences (P < 0.01) between control samples were eliminated 
from the analysis.

GWAS variant information
All single-nucleotide polymorphisms (SNPs) that were associated 
either with the trait “cancer” or with a trait that had cancer, as a 
parent trait were downloaded from the GWAS catalog (date: 19 
November 2021) (81). There were 7796 SNPs associated with at least 
one of the cancer traits and 11,155 cancer trait associated with one 
of the SNPs.

Single-cell RNA sequencing
CD298 and β2-microglobulin antibodies from BioLegend (341711, 
RRID:AB_2876646 and 316302, RRID:AB_492835) were labeled 
with TotalSeqB-oligos according to a protocol by van Buggenum 
et  al. (82). Cells were cultured on 24-well plates and treated with 
varying drug concentrations and durations. In the end of the drug 
treatment, each row and column on the plate was labeled according 
to the cell hashing protocol by Satija laboratory (https://cite-seq.
com/protocols/), with a unique TotalSeqB barcode, resulting in 
unique combination of two barcodes for each treatment condition. 
After the labeling, cells from the whole plate were pooled and resus-
pended in phosphate-buffered saline (PBS), and sequencing librar-
ies were prepared on a Chromium platform using Single Cell 3′ v3 
and feature barcoding reagent kits (10x Genomics, Pleasanton, CA) 
according to the manufacturer’s instructions. For each plate, 2500 to 
5000 cells were sequenced at a depth of 50,000 to 100,000 reads per 
cell on a NovaSeq (Illumina). Preprocessing of the data was per-
formed using CellRanger v3.0.2 (10x Genomics). Cells were further 
filtered on the basis of read count and TotalSeqB barcode count dis-
tribution that did not match a single to a treatment condition to re-
move probable empty beads. Gene expression was modeled as a 
function of drug concentration, treatment duration, cell cycle phase, 
and presence of resistance mutation, and genes were ranked by the 
explanatory power of the drug effect in the model.

Phosphoproteomics
Cell line samples were collected at early (30 min or 2 hours) and late 
(24 hours) treatment time points. The cells were washed twice with 
ice-cold PBS and scraped into cold PBS with phosphatase inhibitors 

(PhosSTOP, Roche). Pelleted cells were snap-frozen and lysed with 
8 M urea buffer with 100 nM Triethylammonium bicarbonate 
(TEAB; Sigma-Aldrich). Lysates were reduced with dithiothreitol at 
a final concentration of 20 mM and alkylated with indole-3-acetic 
acid at a final concentration of 40 mM. For digestion, the buffer was 
diluted to <2 M urea concentration, and samples were digested 
overnight with Lys-C (Wako), followed by 4-hour digestion with 
Trypsin (Promega) at room temperature. Digests were desalted, and 
200 to 400 μg of each sample was labeled with TMT or TMTPRO 
reagents. Multiplexed samples were reverse-phase fractionated at 
high pH on an Acquity ultraperformance LC (UPLC) system (Waters) 
similarly to Christoforou et al. (83). Ten percent of each fraction 
was taken for total protein analysis, and the remaining was enriched 
with a modified Sequential elution from Immobilized Metal Affinity 
Chromatography (SIMAC) procedure. Briefly, dried peptides were 
reconstituted with 50% acetonitrile (ACN) and 0.1% trifluoroacetic 
acid (TFA) and incubated with Titansphere beads (Hichrom Ltd.) 
loaded in equal volume in 80% ACN, 5% TFA, and 1 M glycolic acid 
for 30  min with shaking (≥4:1 bead:peptide ratio). Beads were 
washed once with 80% ACN and 1% TFA and once with 10% ACN 
and 0.1% TFA and eluted with ~1.2% ammonia after 10-min incuba-
tion with shaking. Supernatants from loading and wash steps were 
pooled for five to six fractions, and each pool was dried and en-
riched with High-Select Fe-NTA Phosphopeptide Enrichment Kit 
(Thermo Fisher Scientific).

The LC–electrospray ionization (ESI)–MS/MS analyses were 
performed on a nanoflow high-performance LC (HPLC) system 
(Easy-nLC1000, Thermo Fisher Scientific) coupled to the Orbitrap 
Fusion Lumos mass spectrometer (Thermo Fisher Scientific, Bremen, 
Germany) using SPS-MS3 acquisition method. Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathway data (January 2022 release) 
(84), excluding KEGG DISEASE category, were obtained using 
KEGGREST R package. Protein complexes were downloaded from 
CORUM database (3.9.2018 release) (85). Phosphorylation site motif 
analysis was performed using iceLogo (86).

Frozen tumor biopsies were cut into 500-μm slices, and each slice 
was pulverized with a dounce in a microcentrifuge tube. Pulverized 
samples were lysed, reduced, alkylated, and desalted similar to cell 
line samples. Each slice (100 μg) was labeled with TMTPRO, and 
pooled sample was offline fractionated with Agilent 1260 HPLC 
system following a protocol by Mertins et al. (87). Fractions were 
pooled to 12 samples, and 10% of each fraction was taken for total 
protein analysis. Remaining sample was enriched with High-Select 
Fe-NTA Phosphopeptide Enrichment Kit (Thermo Fisher Scientif-
ic). The LC-ESI-MS/MS analyses were performed on a nanoflow 
HPLC system (Easy-nLC1200, Thermo Fisher Scientific) coupled to 
the Orbitrap Fusion Lumos mass spectrometer (Thermo Fisher Sci-
entific, Bremen, Germany) equipped with a nanoelectrospray ion-
ization source and FAIMS interface (Thermo Fisher Scientific).

Protein interaction analysis by PISA assay
PISA assay was performed as described previously (40). Briefly, 
samples were collected at 2- and 24-hour treatment time points. 
Each resistant/sensitive cell line pair was analyzed in five replicates 
for drug-treated and control cells split between two TMT 11-plexes 
with a calibrator sample. TMT multiplexes were cleaned and desalt-
ed using on C18 SepPack column, fractionated by reversed-phase 
chromatography at high pH using capillary flow rate of 200 μl/min 
and a binary solvent system consisting of 20 mM NH4OH in H2O 
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and 20 mM NH4OH in ACN. The elution was monitored measuring 
ultraviolet absorbance at 214 nm. A total of 96 fractions, 100 μl each, 
were collected, concatenated into 24 fractions, dried, and analyzed 
on Thermo Orbitrap Q-Exactive HF coupled to UltiMate 3000 RSLC 
nanoUPLC system. The data were normalized by median, and the 
data between different TMT multiplexes were combined by calcu-
lating a ratio to the calibrator sample included in both multiplexes. 
Drug-induced changes were identified by comparing the treated 
cells to nontreated cells, and proliferation-associated changes were 
identified by comparing the drug-induced changes between sensi-
tive and resistant cells. Protein solubility changes in KEGG pathways 
and protein complexes were analyzed similarly to the phosphopro-
teomics data.

Metabolite analyses
Samples were collected after 24-hour drug treatment, and intracel-
lular metabolites were extracted using a methanol/chloroform meth-
od. Briefly, 600 μl of methanol/chloroform (2:1, v/v) was added to 
each cell pellet (~50 μl). Samples were vortex mixed and sonicated 
for 15 min. Two hundred microliters of chloroform and water were 
added, and samples were vortex mixed and separated by centrifuga-
tion at 17,000g for 15 min. The aqueous and organic layers were then 
collected, and the procedure was repeated using halved volumes on 
the residual sample containing the precipitated protein to maximize 
the recovery. Collected layers from two rounds of extraction were 
combined, and the aqueous layer was dried overnight in vacuum 
centrifuge (Eppendorf), while the lipid fraction was dried under ni-
trogen gas flow. Dried samples were stored at −80°C.

Targeted metabolite analysis was performed with reverse- and 
normal-phase separations on a Thermo Fisher Scientific ultra-
HPLC (UHPLC)+ series coupled with a TSQ Quantiva mass spec-
trometer operated in positive and negative ion mode with switching 
mode, as previously described (88). Stable isotope-labeled standards 
were used to allow quantification of the detected metabolites, and 
data were normalized to cell count.

Fitness effect of phosphorylation sites and MYC target sites 
by CGE assay
CGE assay was performed as described in Pihlajamaa et  al. (41). 
Briefly, 200,000 to 400,000 early-passage HAP1 cells were transfect-
ed with a ribonucleoprotein complex containing tracrRNA and 
crRNA (250 to 500 ng) with S.p. HiFi Cas9-protein (1 to 2 μg; Inte-
grated DNA Technologies), together with ssODN homology direct-
ed repair (HDR) template with a final concentration of 3 nM using 
CRISPRMAX (Life Technologies) following the manufacturer’s rec-
ommendations. For prime editor experiments, plasmids for prime 
editor and Prime Editing Guide RNA (pegRNA), pCMV-PE2 and 
pU6-pegRNA-GG-acceptor (#132775 and #132777, respectively, 
Addgene) (89), were transfected using FuGENE HD (Promega) 
according to the manufacturer’s instructions and 4:1 FuGENE 
HD:DNA ratio. Half of the cells were collected for genomic DNA 
(gDNA) isolation on day 2 after transfection, and the other half cul-
tured until day 8 for late time-point sample. Isolation of gDNA, 
treatment with ribonuclease A, exonucleases I and VII, two-step 
polymerase chain reaction amplification, sequencing, and data anal-
ysis were performed as described in Pihlajamaa et al. (41). A read 
count cutoff of 5 to 50 was used for day 2 samples, depending on the 
sequencing depth. Sequences of crRNAs, HDR donor templates, pe-
gRNAs, and target-specific primers are listed in table S5.

Gene regulatory network construction
The human gene and paralogous gene pair annotations were down-
loaded from Ensembl version 54. The paralogous gene pairs were 
merged into paralog groups one by one, making sure that the groups 
remained consistent, i.e., all the paralogs of a gene were in one group.

The gene regulatory network has five classes of nodes: TFs, ChIP-
seq peaks, cancer-associated SNPs, target genes, and paralog groups. 
Edges were drawn from each TF node to all its peak nodes and from 
a peak and SNP nodes to a target gene node if they are within 500 kb 
of the gene. Target gene nodes were connected to the corresponding 
paralog group nodes. Features such as ChIP-seq cancer cell lines, 
peak heights, GWAS traits, SNP P values, and the distances of these 
features from the TSS of a gene (measured as the number of genes 
that have a TSS closer to the feature), were assigned as attributes to 
the respective nodes and edges.

The edges between ChIP-seq peak and SNP nodes and the target 
gene nodes were scored on the basis of two different criteria: the 
rank of the regulatory feature (peak height or cancer association P 
value) and the rank of its distance from the target gene, both within 
all features of the same type (peaks in the same cell line or SNPs as-
sociated with the same cancer trait). The edge score was then calcu-
lated as the fraction of all regulatory relationships of the same type 
that ranked at least as highly by both criteria as the regulatory rela-
tionship being scored.

Network queries
The regulatory network was searched for matches of short regula-
tory paths that represented the regulatory relationships of interest. 
The queried paths ended either to a target gene (GWAS query) or to 
a paralog group (ChIP-seq query). A path in the regulatory network 
and a query path match only if there is a mapping (subgraph iso-
morphism) between their nodes that preserves both node adjacen-
cies and their attribute values (the class of the node and additional 
constraints such as whether the node represents a gene involved in 
cell cycle regulation). All network paths matching a query path were 
searched as follows:

1) Traverse the query path in the reversed direction of the edges 
starting from the target node (representing the target gene or para-
log group) and collect the node at each depth.

2) In the regulatory network, search all the nodes that match the 
target node of the query.

3) For each matching target node in the regulatory graph, do a 
depth first search of the network, again in the reverse direction of 
the edges. The search is continued only if the regulatory network 
node matches the query node at the same depth. If a matching path 
is found, then it is added to the match subnetwork.

The target nodes were then ranked using a combined target score 
calculated as the product of the scores of the incoming edges to the 
target gene node(s) in the match subnetworks. For each type of edge 
(from cell line or cancer trait node), only the edge with the smallest 
score is used in the scoring. The final result of the search is a list of 
target genes or paralog groups ranked in the ascending order of 
their total combined scores. The network search algorithm was im-
plemented as a Cytoscape plug-in (90). The networks were con-
structed, and queries were executed in Cytoscape version 2.8.0 using 
Java version 6.

Permutation testing was used to assess how probable it is to ob-
tain by chance the observed amount of signal from multiple tumor 
types or cancer traits to a target gene or paralog group. The null 
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hypothesis was that there was no association between the targets and 
different (cell line or cancer trait) scores that contribute to the com-
bined scores and, thus, the target labels (genes or paralog groups) 
were exchangeable. The following round of permutations followed 
by recalculation of scores was performed a hundred thousand times. 
First, for each cell line or cancer trait, the target node labels (genes or 
paralog groups) were permuted so that the assignment between the 
cell line or cancer trait scores and targets was randomized. Then, a 
combined score was calculated for each target based on the random-
ized subnetwork. The empirical P value was calculated for each tar-
get gene or paralog group as the fraction of the rounds in which it got 
the same or smaller combined score than its combined score in the 
network query. The reported P values were not corrected for multi-
ple hypothesis testing. The results of the queries corresponding to 
Fig. 1 (C and D) are presented in table S6.

Modeling drug responses in the single-cell 
transcriptomics data
Drug effects on gene expression were analyzed using a multivariate 
regression model with treatment time, drug concentration, cell line 
identity (parental versus resistant), and cell cycle phase as variables. 
The model used full factorial design and assumed monotonicity for 
the time and concentration variables. The expression values were 
sum normalized for each sample and then ranked over the samples, 
and the ranks were mapped to [0, 1], zero as the lowest expression 
value and one as the highest for each gene. A model was fit indepen-
dently on each gene using the least-squares metric. Specifically, the 
estimated expression levels β* are

such that for all i

and

where xi,j is the normalized expression level of the ith gene in the jth 
cell; βi,p,d,t,c represents the estimated expression level (model) of the 
ith gene for the pth cell line, dth drug concentration, tth time point, 
and cth cell cycle phase; and Pj, Dj, Tj, and Cj are the cell line, drug 
concentration, time point, and cell cycle phase groups of the jth cell, 
respectively. The problem can be formulated as quadratic programs 
and were solved with the interior point solver of MATLAB R2019b 
with default parameters.

Because cell cycle distribution is not independent of treatment 
time and drug concentration effects, including cell cycle phases esti-
mated with Seurat (91) overcorrected the model. To regress out 
common cell cycle phase effect, while still retaining the early re-
sponses to the drugs, cell cycle phase estimation for each cell line 
was combined with the above model on specific cell cycle phase 
marker genes (92). Specifically, the unknown cell cycle phases Cj in 
the above model can be solved with the following iterative algo-
rithm: (i) Given current Cj, solve Eq. 1 for the model effects β in the 
relevant genes i with the additional constraint of expression being 
high in specific genes.

Such that for all c, i where the gene i is specific to the cell cy-
cle phase c

(ii) Given the current model effects β, choose a new set of the most 
likely cell cycle phases Cj* for each cell using

Iterating (i) and (ii) converges into an optimum of Eq. 1 subject 
to Eq. 2 with respect to both β and Cj free. The initial cell cycle phas-
es Cj were drawn independently from a uniform distribution, and a 
total of 100 iterations with 10 restarts were used. The cell cycle phas-
es derived using this procedure were then used as regressors in the 
model of Eq. 1 in estimating the drug effects for all genes.

The contribution of each variable to the model was assessed by 
dropping the relevant variable from the model and performing rank 
variance analysis. Genes were then ranked on the basis of the ex-
planatory power of drug effect in the drug resistant versus the sensi-
tive parental cell line, and the top-ranked genes from each cell line 
pair were used in the subsequent analyses.

MYC target genes
RNA-seq and ChIP-seq for MYC target gene analysis
Wild-type (RRID:CVCL_0492) and Myc-null Rat1 fibroblasts (74) were 
a gift from J. Sedivy, Brown University, and R. Bernards, Netherlands 
Cancer Institute. The cells were maintained in DMEM with 10% FBS 
and antibiotics. To study the Myc targets in rodent cells, different 
levels of MYC were ectopically expressed in Myc-null Rat1 cells us-
ing a lentiviral construct for the human MYC at different values of 
multiplicity of infection [MOI = 1 and MOI = 3; construct and 
transduction protocol as described in Sahu et al. (93)]. RNA-seq was 
performed from wild-type and Myc-null Rat1 cells as well as from 
Myc-null Rat1 with MYC transduction (MOI = 1 from two inde-
pendent experiments and MOI = 3 from one experiment). Total 
RNA from four replicates for each condition was isolated using 
RNeasy Mini kit (QIAGEN), and libraries were generated using 
KAPA stranded mRNA-seq kit for Illumina (Roche) and sequenced 
using HiSeq 4000 (Illumina). The reads were aligned to rn6 using 
tophat2 (v2.0.13) (94), and differentially expressed genes between 
Rat1 Myc-null cells and each of the MYC-expressing condition were 
analyzed using cuffdiff (v2.2.1) (95) with default parameters for 
first-strand library type. ChIP was performed using anti-MYC anti-
body (#06-340, Millipore, RRID:AB_11214006; 5 μg per reaction) 
and normal rabbit IgG as previously described (96). ChIP-seq li-
braries were prepared using NEBNext Ultra II DNA Library Prep kit 
(New England Biolabs) and sequenced on HiSeq 4000. The reads 
were aligned to rn6 using bowtie2 (version 2.2.4) (97), and peaks 
were called using MACS2 (version 2.1.1) (98), with default narrow 
peak parameters against normal IgG.

For human cells, the following previously published datasets were 
used: ChIP-nexus data for colon cancer cell lines GP5d (RRID: 
CVCL_1235), LoVo, and COLO320DM (RRID:CVCL_0219) from 
Palin et al. (99) (EGAD00001004099) and Assay for Transposase-
Accessible Chromatin using sequencing (ATAC-seq) data for GP5d 
cells from Sahu et al. (93) (GSE180158). In the genome browser snap-
shots, the traces from BAM coverage files are shown, and in MYC 
target gene analysis, the peaks called for GP5d and LoVo as reported 

β∗ = arg minβ Σi,j

(

xi,j−βi,Pj,Dj,Tj,Cj

)2

(1)

βi,p,d,t,c� ≤ βi,p,d,t,c for all p, d, t, and c� (2)

Cj
∗ = arg minCj Σi

(

xi,j−βi,Pj,Dj,Tj,Cj

)2

(3)
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in Palin et al. (99) were used. For gene expression profiling, RNA-seq 
data from GP5d cells treated with either siRNA against MYC or non-
target control from Palin et al. (99) (EGAD00001004098) were reana-
lyzed by aligning the reads to hg19 using tophat2 (v2.0.13) (94) and 
by performing differential expression analysis using cuffdiff (v2.2.1) 
(95), with default parameters for first-strand library type.
Identifying high-confidence MYC target genes conserved 
between human and rodent cells
To identify putative MYC targets in human colon cancer cells, dif-
ferent datasets were integrated in a stepwise manner. First, MYC 
ChIP-nexus peaks from GP5d and LoVo cells were compared, and 
only the peaks common to both cell lines were used in the analysis. 
Second, the genes expressed in GP5d cells were identified on the 
basis of the RNA-seq data [fragments per kilobase of exon per 
million mapped reads (FPKM) > 2 in control cells], and of these, 
7254 genes with MYC ChIP-nexus peaks within ±1000 base pairs 
(bp) of their transcription start site were taken for further analysis. 
On the basis of differential expression analysis between MYC-
siRNA and nontargeting control, the 1534 genes of 7254 with an 
FDR of <0.1 and a fold change of >1.3 or <−1.3 were extracted. In 
addition, the 430 genes of 7254 with a difference larger than 50 units 
in FPKM values between MYC-siRNA and nontargeting conditions 
were extracted. Last, merging the lists of 1534 and 430 differentially 
expressed genes resulted in 1689 MYC target genes in human colon 
cancer cells.

Similarly, for the Myc targets in rat cells, first, the genes expressed 
in Rat1 wild-type cells (FPKM > 2) having an MYC ChIP-seq peak 
in Rat1 Myc-null cells with an MYC MOI of 3 within ±1000 bp of 
their transcription start site were identified. Of these 6552 genes, the 
1644 genes with an FDR of <0.1 and a fold change of >1.3 or <−1.3 
under at least three of four conditions (Rat1 wild-type versus Rat1 
Myc-null; MYC MOI = 1 from experiment 1 versus Myc-null; MYC 
MOI = 1 from experiment 2 versus Myc-null; and MYC MOI = 
3 versus Myc-null) were extracted. In addition, the 513 genes of 
6552 with a difference larger than 50 units in their FPKM values 
under at least two of four above conditions were extracted. Last, 
merging the lists of 1644 and 513 differentially expressed genes re-
sulted in 1911 MYC target genes in rat fibroblast cells. Last, overlap 
analysis of the putative MYC targets in human and rat cells resulted 
in 490 common high-confidence MYC targets.

MS analyses
Cell line phosphoproteomics
The LC-ESI-MS/MS analyses of phosphoenriched and nonenriched 
multiplexed samples were performed on the Orbitrap Fusion Lumos 
coupled to a nanoLC Dionex Ultimate 3000 UHPLC with a 2-cm 
trap column (Thermo Fisher Scientific) and a 50-cm C18 analytical 
column (75-μm inner diameter, 5 μm, 100 Å; Acclaim PepMap) us-
ing 120- or 180-min separations.

Mass spectra were acquired in positive ion mode using SPS-
MS3 acquisition mode as reported previously (100). Mass spectra 
were acquired in a mass/charge ratio (m/z) range of 375 to 1500 
with a resolution of 120,000. The most intense ions were selected 
for collision-induced dissociation–MS2 fragmentation in the ion 
trap with 35% normalized collision energy. Coselected precur-
sors for SPS-MS3 underwent higher-energy collision dissociation 
(HCD) fragmentation with 65% normalized collision energy and 
were analyzed in the Orbitrap as described by Navarrete-Perea 
et al. (101).

The raw data were searched with Proteome Discoverer v.2.3 (Ther-
mo Fisher Scientific) using Mascot algorithm against UniProt 2019_02 
release using Homo sapiens taxonomy filter. Up to two missed cleav-
ages were allowed. Carbamidomethyl (C), and TMTpro or TMT6plex 
on (K) and (N-term) were used as static modifications. Oxidation 
(M), acetyl (protein N-term), phospho (Y), and phospho (ST) were 
used as variable modifications. Percolator was used for FDR estima-
tion, and only peptide identifications of high confidence (FDR < 1%) 
were included in the analyses.
Proteome integral solubility alteration
PISA samples were analyzed on a Thermo Orbitrap Q-Exactive HF, 
equipped with an EASY-Spray source and connected to an UltiMate 
3000 RSLC nanoUPLC system (Thermo Fisher Scientific). Peptide 
separation was performed using an EASY-Spray C18 reversed-phase 
nanoLC column (Acclaim PepMap RSLC; length, 50 cm; inner di-
ameter, 2 75 μm; particle size, 2 μm; pore size, 100 Å; Thermo Fisher 
Scientific) at 55°C and a flow rate of 300 nl/min. Peptides were sepa-
rated using a binary solvent system consisting of 0.1% (v/v) formic 
acid (FA) and 2% (v/v) ACN (solvent A) and 98% ACN (v/v) and 
0.1% (v/v) FA (solvent B).

Mass spectra were acquired in an m/z range of 375 to 1500 with 
a resolution of 120,000 at m/z 200. Automatic gain control target 
was set to 3 × 106 with a maximum injection time of 100 ms. The 17 
most abundant peptide ions were selected for HCD with normalized 
collision energy value set at 33. The ion abundance threshold was set 
at 0.1% with charge exclusion of z = 1 ion. The MS/MS spectra were 
acquired at a resolution of 60,000, with a target value of 2 × 105 ions 
and a maximum injection time of 120 ms.

Protein identification and quantification were performed using 
MaxQuant search engine and the UniProt human proteome refer-
ence database (UP000005640) for matching MS/MS spectra and 
TMT-base quantification. Cysteine carbamidomethylation was used 
as a fixed modification; methionine oxidation, arginine, and gluta-
mine deamination were used as variable modifications for both 
identification and quantification. Trypsin cleavage with maximum 
two missed cleavages were allowed, and only high confidence (1% 
FDR) was retained in the dataset at both protein and peptide levels. 
After removing contaminants, only proteins with at least two unique 
peptides were included in the final dataset.
Polar metabolite analysis
Analyses were conducted as in McKenna et al. (88). Briefly, a Ther-
mo Fisher Scientific UHPLC+ series coupled with a TSQ Quantiva 
mass spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) 
was used with an ESI source, operated in positive and negative ion 
modes at the same time. The electrospray voltage was set to 3500 V 
for the positive ionization and to 2500 V for the negative ioniza-
tion. Nitrogen at 48 mtorr and 420°C was used as a drying gas for 
solvent evaporation.

For reversed-phase analysis, samples were reconstituted in 0.1 ml 
of a 10 mM ammonium acetate water solution containing a mixture 
of eight internal standards at the concentration of 10 μM (proline, 
valine D8, leucine D10, lysine U13, glutamic acid C13, phenylala-
nine D5, succinic acid D3, and serotonin D4). Samples were ana-
lyzed with an ACE Excel 2 C18 PFP (100 A, 150 × 2.1 mm, 5 μm) 
column. The column was conditioned at 30°C. The mobile phase 
consisted of (A) a 0.1% of FA water solution and (B) a 0.1% of FA 
ACN solution. The mobile phase was pumped at a flow rate of 
500 μl/min programmed as follows: initially held at 100% A for 
1.60 min and then subjected to a linear decrease from 100 to 70% A 
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in 2.4 min and to 10% in 0.5 min, then held constant for 0.5 min, and 
brought back to initial condition after 0.1 min. The Xcalibur soft-
ware (Thermo Fisher Scientific, Waltham, MA, USA) was used for 
data acquisition. Putative recognition of all detected metabolites was 
performed using a selected reaction monitoring (SRM) MS analysis.

For normal-phase analyses, samples were reconstituted in 0.1 ml 
of ACN:10 mM ammonium carbonate water solution (7:3, v/v) con-
taining a mixture of three internal standards at the concentration of 
10 μM (glutamic acid C13, succinic acid D3, and AMP). The samples 
were analyzed with a Bridged Ethylene Hybrid (BEH) amide (150 × 
2.1 mm, 1.7 μm) column. The column was conditioned at 30°C. The 
mobile phase consisted of (A) a 0.1% of ammonium carbonate water 
solution and (B) an ACN solution. The mobile phase was pumped at 
a flow rate of 600 μl/min programmed as follows: initially stayed at 
20% A for 1.50 min, then subjected to a linear increase from 20 to 
60% A in 2.5 min, kept at this percentage for 1 min, and then 
brought back to initial condition after 0.1 min. The Xcalibur soft-
ware (Thermo Fisher Scientific, Waltham, MA, USA) was used for 
data acquisition. Putative recognition of all detected metabolites 
was performed using an SRM MS analysis.
Invasive front tumor samples
The LC-ESI-MS/MS analyses of phosphoenriched and nonenriched 
multiplexed samples were performed on a nanoflow HPLC system 
(Easy-nLC1200, Thermo Fisher Scientific) coupled to the Orbitrap 
Fusion Lumos mass spectrometer (Thermo Fisher Scientific, Bremen, 
Germany) equipped with a nanoelectrospray ionization source and 
FAIMS interface (Thermo Fisher Scientific). Three FAIMS compen-
sation voltages, −40, −60, and − 80 V, were used. Online chromatog-
raphy was performed with one of the two different column setups: (i) 
Samples first loaded on a trapping column and subsequently sepa-
rated inline on a 15-cm C18 column (75 μm by 15 cm; ReproSil-Pur 
3 μm 120 Å C18-AQ, Dr. Maisch HPLC GmbH, Ammerbuch-Entringen, 
Germany); (ii) samples were loaded on an in-house packed 25-cm, 
75-μm–inner diameter capillary column with 1.9-μm Reprosil-Pur C18 
beads (Dr. Maisch, Ammerbuch, Germany) with column temperature 
maintained at 60°C. The mobile phase consisted of water with 0.1% FA 
(solvent A) or ACN/water (80:20, v/v) with 0.1% FA (solvent B). A 
120-min two-step gradient from 7 to 24% of eluent B in 62 min to 39% 
of eluent B in 48 min, followed by a wash stage with 100% of eluent B, 
was used to eluate peptides.

MS data were acquired automatically by using Thermo Xcalibur 
4.4 software (Thermo Fisher Scientific). A data-dependent acquisi-
tion method consisted of an Orbitrap MS survey scan with a mass 
range of 350 to 1750 m/z, with a resolution of 120,000, followed by 
HCD fragmentation for the most intense peptide ions in a top speed 
mode with a cycle time of 1 s for each compensation voltage. MS/
MS spectra were collected with resolution of 50,000.

Data files were searched using ProteomeDiscoverer 2.5 software 
(Thermo Fisher Scientific) connected to an in-house server running 
the Mascot 2.7.0 software (Matrix Science). Data were searched 
against a SwissProt (version 2021_4) database using H. sapiens tax-
onomy filter. Carbamidomethyl (C), TMTpro (K), and TMTpro (N-
term) were used as static modifications. Oxidation (M), acetyl (protein 
N-term), phospho (Y), and phospho (ST) were used as variable 
modifications. Abundance values for peptides and proteins were 
calculated on the basis of intensities of TMTpro reporter ions. Only 
unique peptides were used for the protein level quantitation, and 
only peptide identifications of high confidence (FDR <  1%) were 
included in the analyses.

Quantification and statistical analyses
FDR of peptide identifications was estimated using target-decoy ap-
proach, and peptides with FDR <1% were included in the analyses. 
Statistical analyses of the proteomics data were performed using R 
software (version 4.1). All the t tests, Wilcoxon signed-rank tests, 
and Fisher’s exact tests were two sided. Benjamini-Hochberg adjust-
ment was used to account for multiple hypothesis testing in the 
functional enrichment analyses. All the measurements were taken 
from distinct samples. Statistical details of experiments can be found 
in the figure legends. Significance testing for gene regulatory net-
work queries and modeling of the drug responses in the single-cell 
transcriptomics data are described under relevant sections in Mate-
rials and Methods. A priori sample size calculations were not per-
formed. Sample sizes for the analyses were determined by the nature 
of the data (such as the number of genes, proteins, or phosphoryla-
tion sites belonging to a certain biological category or the number of 
edited lineages in the CGE assay).

Supplementary Materials
This PDF file includes:
Figs. S1 to S8
Tables S1 to S6
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