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Abstract—Computational analysis of data produced in deep sequencing (DS)

experiments is challenging due to large data volumes and requirements for flexible

analysis approaches. Here, we present a mathematical formalism based on set

algebra for frequently performed operations in DS data analysis to facilitate

translation of biomedical research questions to language amenable for

computational analysis. With the help of this formalism, we implemented the

Genomic Region Operation Kit (GROK), which supports various DS-related

operations such as preprocessing, filtering, file conversion, and sample

comparison. GROK provides high-level interfaces for R, Python, Lua, and

command line, as well as an extension C++ API. It supports major genomic file

formats and allows storing custom genomic regions in efficient data structures

such as red-black trees and SQL databases. To demonstrate the utility of GROK,

we have characterized the roles of two major transcription factors (TFs) in prostate

cancer using data from 10 DS experiments. GROK is freely available with a user

guide from http://csbi.ltdk.helsinki.fi/grok/.

Index Terms—Bioinformatics, deep sequencing, genomic data analysis, region

set algebra, software
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1 INTRODUCTION

BIOMEDICAL research benefits from the use of genome-scale
measurement technologies that allow rapid quantization of genetic
variation, transcriptional or protein activity, binding of transcrip-
tion factors (TFs), and epigenetic modifications in a high resolu-
tion. In particular, deep sequencing (DS) is a general technology in
which target molecules, such as DNA and RNA, are fragmented,
sequenced and the resulting short reads are then processed
computationally [1]. The short reads can be used in various
applications, such as de novo sequence assemblies, resequencing of
individuals, transcriptional and epigenetic profiling, and determi-
nation of DNA-protein interactions, depending on the experi-
mental setup. The number of short reads in a DS experiment can be
hundreds of millions, which poses challenges in managing and
analyzing DS data. Indeed, the lack of flexible and efficient
bioinformatics analysis is recognized as a major bottleneck in DS
applications [2].

Bioinformatics analysis of DS data is typically implemented by
multiple connected steps that form computational workflows.
Common steps include sequence alignment, quality control, peak
detection, variant calling, differential expression determination and
database annotation [3], [4]. These steps may be implemented using

various software packages that often do not have standardized
interfaces. To connect these steps together, there is a need for
general-purpose tools that act as glue, or adaptors, between various
analysis software. These “glue tools” implement functionality such
as preprocessing, filtering, file conversion, and comparing and
combining replicate samples. A useful abstraction for such glue
tools is the genomic region: an annotated chromosomal interval that
may represent sequencing reads, genomic variants, exon coordi-
nates, and copy numbers. Importantly, many cases of genomic
processing can be expressed in terms of genomic regions.

Existing glue tools for processing genomic regions include
interactive and scripting-based solutions. While interactive appli-
cations, such as Galaxy Browser [5] and Savant [6] may be
relatively easy to learn, scripting-based approaches, such as
BEDTools [7], Pybedtools [8], BEDOPS [9], and Tabix [10], have
better scalability to complex and large experimental setups due to
their extensive automation support. Even though the BEDTools
family supports command-line and Python interfaces, there is no
comparable solution for the popular R language. In addition, the
existing tools are composed of fragmented sets of utilities where
each operation is implemented as a special case, which may hinder
their use and extension. Accordingly, there is a need for a library
that systematically implements genomic region operations derived
from an underlying mathematical framework.

We introduce here the Genomic Region Operation Kit (GROK),
which is a software toolkit and framework for general purpose
processing of genomic region data. The software has two target
audiences: data analysts who process experimental DS data, and
method developers who implement novel algorithms for DS
analysis. For practical data analysis tasks, GROK provides flexible
tools to process large-scale data sets using R, Python, Lua, or a
command-line interface (CLI). For method developers, GROK
provides a clean and extensible C++ API that enables access to
genomic file format I/O and efficient data structures, such as an
SQLite database, which facilitates method development.

Design of genomic analysis tools is often driven by practical
needs. However, it is also important to develop theoretical
frameworks that allow systematic development and use of
mathematical operations applied to genomic data. To have a solid
formal foundation for GROK and to identify all relevant region
operations, we formalized the key concepts used by the library in
mathematical form with a region algebra. This formalism fully
specifies the genomic region abstraction. The algebra developed
herein can be seen as a facilitator that provides a vocabulary to
translate biomedical research questions into computational lan-
guage. The formalism allows answering these questions with
computational tools, such as the freely available GROK software.
To demonstrate the utility of GROK and the region algebra, we
analyze androgen receptor (AR) binding sites in a prostate cancer
cell line using 10 DS experiments.

2 REGION ALGEBRA

2.1 Sequences and Regions

A sequence represents a nucleotide polymer such as a reference
chromosome or a sequencing read. We denote the set of all
sequences Q and an element of this set q 2 Q. A sequence is
composed of a concatenation of symbols from the DNA alphabet
{A, C, G, T} that represents covalently bound nucleotides in the
5’ to 3’ direction. Given a sequence q with symbols a0 . . . an�1,
the length of the sequence jqj ¼ n is the number of nucleotides in
the polymer. Sequences have an identity independent from the
string of nucleotide elements: it is possible for two sequences
q1 6¼ q2 to have identical nucleotide composition. This formula-
tion allows to consider unmapped short reads from the same
genomic locus as distinct entities.

A key concept in our formalism is the region, which represents
a segment (interval) of a specific sequence. For reference
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chromosome sequences, regions represent genomic intervals such

as gene, exon, or single nucleotide polymorphism (SNP) genomic

coordinates. Regions can also represent custom entities such as

aligned short reads and TF binding sites located by ChIP-seq

(chromatin immunoprecipitation followed by massive parallel

sequencing) peak detection algorithms [11].
Regions have attributes that define which nucleotides are

covered by the region r 2 R in the sequence hQðrÞ. The leftmost

position hLðrÞ 2 f0; 1; . . . ; jhQðrÞj � 1g is the first position in the

sequence hQðrÞ covered by the region when reading from the

5’ end. Length hNðrÞ � 0 denotes how many nucleotides are

covered in total; a zero-length region is allowed. Strand hDðrÞ 2
f�1; 0; 1g indicates whether the region is located in the forward (1)

or reverse (�1) strand, or whether the strand is not relevant (0). An

identity tag hIðrÞ 2 IN, which is an integer with no semantic

meaning, is used in conjunction with other attributes to define an

equivalence relation for regions. These five attributes of a region

form an identity tuple ðhQðrÞ; hLðrÞ; hN ðrÞ; hDðrÞ; hIðrÞÞ that defines

the equivalence relation for regions: Two regions are equivalent if

and only if their identity tuples are identical.
A region covers the nucleotides in the half-open interval

½hLðrÞ; hLðrÞ þ hNðrÞÞ. Strandedness hDðrÞ affects how this interval

is interpreted: For forward strand regions, the region is read

rightward from hLðrÞ, while for reverse strand regions, the region

is read leftward from hLðrÞ þ hNðrÞ � 1. For “none” strand regions

with hDðrÞ ¼ 0, the reading direction is not relevant. We use the

term “leftmost” position for hLðrÞ instead of “start” position to

avoid ambiguity with reverse strand coordinates.
There are two semantic interpretations for regions that we

denote by relation and interval interpretations. In the former, a

region is analogous to a relation in a database that has its own
unique identity, such as a specific gene. If the attributes of the
region are modified, for example, by splitting the region, the
identity is lost. By contrast, in the interval interpretation, the region
represents a genomic interval whose important characteristics are
the nucleotides covered, but not the particular identity of the
region itself. For instance, the region can be split into two adjacent
regions covering the same genomic area with no loss of
information. Such regions may represent DNA-protein interaction
sites, GC-rich genomic areas, or other custom markers.

2.2 Region Operations

Related regions are often aggregated and processed together in
regions sets. For example, all gene coordinates in the human genome
form a region set, as do all aligned short reads for a particular
biological sample. Operations that filter, combine, or modify region
sets are common in sequencing applications. Such operations
are mathematically of the form f : PðRÞ � � � � � PðRÞ ! PðRÞ,
where PðRÞ denotes the power set of regions R. In other words,
these operations take one or more region sets as arguments and
produce a single region set as result. Algebraic functions with this
form are the core operations of the formalism. Operations can be
divided into two main categories based on whether they maintain
the identities of individual argument regions. Identity-preserving
(IP) operations are filters that produce a subset of their input
regions as result. They are most naturally used with the relation
interpretation of regions. Nonidentity-preserving operations may
split, combine, move, and expand regions and are used in the
interval interpretation. Table 1 lists all region operations and
Tables 2 and 3 illustrate their usage.

The most fundamental region set operations are the classical
set operations: union, intersection, and difference. These are
defined in two flavors to accommodate both relation and
interval interpretations. Relation operations [, \, and n are
defined using region identity tuples and correspond directly to
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TABLE 1
Region Operation Definitions

IP indicates whether the operation is identity-preserving. A, Ai, and B denote
region sets � R. An denotes a vector of n regions sets A1; . . . ;An. All
operations produce a set of regions.

TABLE 2
Illustration of Nonidentity Preserving Region Operations

Region r spans the whole sequence.

TABLE 3
Illustration of IP Region Operations

Regions a2 and a3 denote the second and third regions of A, respectively. The
function LENGTHðR;L;HÞ is defined using FILTER so that the accept function
produces those regions in R whose length is at least L and at most H.
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the classical set-theoretical definition. Interval operations [L, \L,
and nL discard region identity and operate at the level of
individual genomic locations (denoted by L in operation names).
Conceptually, the L variants first split all regions into one-
nucleotide regions with unit length and then compute set
operations for these. In essence, each nucleotide location of the
genome is considered individually. The union and intersection
operations are generalized into the FREQ and FREQL operations
that take lower and upper frequency boundaries as parameter. It
allows to define k-out-of-n operations such as “select genomic
regions present in three out of four samples.”

Other operations allow filtering and modifying regions. The
OVERLAP operation is a filter that compares whether regions in
two region sets share common nucleotide positions: For instance,
whether gene coordinates overlap with transcription factor
binding sites. It is related to the interval intersection operation
\L in the sense that when overlapping regions are present, their
interval intersection is nonempty. However, OVERLAP is IP and
thus can be used in contexts where the relation interpretation is
used. The operations FLIP, EXPAND, and SHIFT allow manip-
ulating region attributes. MERGE combines adjacent regions (as
defined by a gap parameter) into one.

2.3 Score and Aggregate Functions (AFs)

In addition to processing interval data, many sequencing applica-
tions require quantitative processing in which numeric values are
attached to genomic locations. Examples include short read
coverage counts, Phred quality values for base calling as well as
p-values and fold enrichments for ChIP-seq peak detection and
RNA-seq results. These numeric values can be associated to
regions using score functions of the form s : R! IR that assign a
unique real value to each region. There may be multiple score
functions defined for a region set; for example, replicate samples
produce individual coverage functions.

While score functions can be defined for any region set, they are
most natural in a context where each genomic location obtains a
unique score value, such as short read coverage. In our formalism,
this is accomplished by defining a score value over a region set that
is a partition, i.e., whose regions cover all locations of their
associated sequences exactly once. Then, each region defines one
piece of the piecewise-defined function from genomic locations to
real values. Here, the interval interpretation of regions is used.

Many region set operations create new regions by modifying
identities of existing regions, which raises the need to synthesize
scores for the new regions. Since scores are defined based on
region identity, score values could be “lost” when the identity
changes. To avoid this, synthesis of new scores is done using AFs
that map a vector of old scores into a unique new score. These AFs
are conceptually similar to SQL AFs. AFs are used in conjunction
with nonidentity preserving region set operations to ensure that
score information is preserved, or to summarize a collection of
scores into a single composite value (e.g., maximum). AFs are
listed in Table 4.

3 GROK SOFTWARE DESIGN

GROK is an extensible software library for practical processing of
DS and other genomic data sets. The design of the library is based
on the concepts elaborated in the region algebra. A design goal of
GROK is to implement elementary operations with generic
interfaces that are used as building blocks for complex operations.
For example, computing short read coverage is a special case of a
union operation that assigns region score annotations based on
short reads counts.

GROK architecture is based on two core abstractions: A region
model and a region store interface. Regions represent the genomic
data for processing, and region stores provide programmatic
access to collections of regions. Complex operations are imple-
mented using these abstractions. The region model is derived from
the region tuples in the region algebra, and supplemented with
additional annotations. Similarly, region stores are the software
analogue of region sets.

3.1 DNA Region Model

In the software context, a region is an annotated DNA interval that
corresponds to one record in files such as BED, GFF, and BAM [12].
The region model is not specific to any single file format, but rather
abstracts features found in commonly used genomic formats.
Regions can be read from files but also created from custom
analysis algorithms. Regardless of their origin, regions use the
same data model and can be compared to each other and
processed in similar manner. File format parsers implemented in
GROK transform regions into a standard format. However, regions
from different origins (such as BED and BAM files) may support
different sets of annotations.

Regions are represented as sets of attribute values, i.e., key-
value pairs. Keys are always strings and values may be strings,
integers or floating point values. Attributes are divided into core
attributes, which are available for all regions regardless of their
origin, and an arbitrary number of optional annotations. Core
attributes are listed in Table 5 and directly correspond to the
elements of region identity tuples in the formalism.

Optional annotation attributes provide context specific infor-
mation to regions, such as file format specific fields. Example
annotations include region identifiers (e.g., column four in BED
format), numeric scores (e.g., column five in BED format), and
nucleotide sequence strings for short reads. A region may have any
number of annotations as long as their keys are unique. Regions
from the same origin (e.g., from the same file format) share the
same set of available annotations. Annotation values do not affect
region identity, since they are not part of the identity tuple. That is,
two regions with the same core attributes but different annotations
are still considered to be identical.

3.2 Region Store Interface

GROK provides access to region collections through a region store
interface. This is an abstract interface that has multiple ready-made
implementations in GROK; in addition, users can define new
implementations using C++. The region store interface defines
methods for adding, removing, querying, and iterating over
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TABLE 4
AFs

Here, S denotes a vector IRn of n existing score values. Its length n is
denoted by jSj.

TABLE 5
Core Region Attributes in GROK
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regions. All methods are listed in Table 6. Region store

implementations generally do not support all methods, but rather

a subset of them. Region stores provide facilities for file I/O,

intermediate storage for multipass algorithms, and region filtering

and transformation operations. In combination with the DNA

region model, the interface provides uniform access to these

diverse use cases. Implementation details, such as the actual file

formats or data structures used, are largely hidden from the user.
The major categories of region store implementations are file

readers, file writers, and region databases. Readers support only

the iteration method (iter) and they iterate over each region

defined in an input file. Similarly, writers support only the writing

(appending) method (add): A region “added” to the region

collection is written to an output file. Region databases are in-

memory or on-disk stores that support adding, removing, and

querying methods. They are used for multipass algorithms that

need to keep intermediate results in storage, and they provide

index structures for efficient processing. Databases use the file

format independent region model to store regions efficiently and

in homogeneous format regardless of region origin. Databases can

store arbitrary region annotations in addition to core attributes.
GROK implements over 10 region stores for various purposes.

For I/O, GROK provides readers and writers supporting major

genomic file formats (BAM/SAM [12], BED, BedGraph, CSV,

FASTQ [13], GFF, VCF [14], and Wiggle). For databases, there are

three general-purpose implementations and one specialized for

processing score functions. General-purpose databases include in-

memory hash and redblack stores that support efficient member-

ship queries using hash table and redblack tree indices [15],

respectively, and an SQLite store that allows processing regions

in an on-disk or in-memory SQL database. The redblack store is

intended for data sets that fit into memory and should be iterated

in genomic order. The hash store uses a different indexing

strategy that does not order regions. The SQLite store can be

used for large data sets with its on-disk option; in addition, it

provides an efficient implementation of overlap queries (the

OVERLAP operation). A variant of the redblack store, a redblack

partition store, is used for manipulating score functions using the

set_score method.
Region stores can be flexibly combined into ad hoc workflows

that compute composite operations using several instances of

elementary region stores. A simple workflow would consist of a

BAM reader combined to a BED writer, i.e., regions produced by

the BAM iterator are written (added) to the BED region store.

This implements BAM to BED file conversion and also illustrates

how this common use case can be implemented directly using the

core facilities of GROK instead of a special case. As a more

complex example, the set difference operation AnB is implemen-
ted by as follows:

1. Constructing region readers for A and B.
2. Initializing an empty region database (e.g., a redblack

store) for temporary storage.
3. Adding all regions from A to the database.
4. Removing all regions from B from the database.
5. Writing database contents into output file.

For convenience, this composite operation and other similar
operations are available in the scripting language APIs.

3.3 Multilanguage API

Region store implementations and other GROK facilities are
accessible through a uniform interface from the scripting
languages R, Python, and Lua. The scripting interfaces are
generated using SWIG [16] to ensure consistent access for different
languages. In addition, a CLI provides a subset of GROK
functionality for shell scripting. The CLI includes commands for
file conversion and set operations. Finally, a C++ API is available
for extending GROK and for integrating GROK into other C++
applications such as genomic analysis programs. An illustration of
implementing the AnB set operation using the R API of GROK is
shown in Fig. 1, this function is also available as a predefined high-
level function in the GROK API. Full details of the APIs, as well as
additional code examples, are in the GROK User Guide.

4 BENCHMARK STUDIES

We assessed the performances of GROK, BEDTools 2.16.2, and
BEDOPS 1.2.5 using a set of six benchmarks listed in Table 7. Each
benchmark was implemented using GROK, BEDTools, and BED-
OPS, and the results were checked for consistency, excluding
minor differences such as BED annotation columns or row order
(except in the Sort benchmark). The benchmarks measure both
execution (wall clock) time and memory usage (maximum resident
set size), as reported by the GNU time utility. To minimize the
effect of I/O performance on timing results, a memory file system
was used. The benchmarks were executed three times and the best
measurement for each method was selected. For GROK, the Lua
bindings were used. Benchmarks were executed on a 64-bit
Xubuntu 12.04 machine with an Intel i5-2520M 2.5-GHz CPU,
8-GB RAM and a solid disk drive.

The main input for the benchmarks was a BAM file
(wgEncodeBroadHistoneHepg2CtcfStdAlnRep1.bam) having
2.4 million short reads and taking 101 MB of size from the
ENCODE project [17]. The BAM file was converted to a sorted BED
file that was used for all benchmarks except BAM to BED. A
secondary input was a 14-MB BED file containing annotations of
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TABLE 6
Region Store Methods

Fig. 1. Example of using the R API of GROK. The code computes the set
difference A nB using relation interpretation of regions. Inputs are read from two
BED files. An in-memory redblack database is initialized; the store supports the
union of annotation attributes of A and B as specified in the constructor
grok.redblack.store. Results of the set difference are written to a BED file.
For convenience, the set difference operation is available as grok.diff in the
GROK API.
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human gene and exon coordinates, totaling 423,234 records. We

denote these three files EBAM (ENCODE BAM file), EBED

(converted EBAM file), and GENES (gene coordinates).
The BAM to BED benchmark measures basic file read and write

routines. For GROK, time and memory complexities are OðnAÞ
(where nA is the size of the EBAM input) and Oð1Þ, respectively.

The Intersection benchmarks executes the “EBED \L GENES”

operation, where EBED and GENES denote the region sets
corresponding to these two inputs. The time complexity of the

GROK implementation is OðnB lognB þ nG lognGÞ, where nB and

nG denote sizes of the EBED and GENES inputs, respectively, and

the memory complexity is OðnB þ nGÞ. The Sort benchmark sorts a

BED file and has both time and memory complexity of

OðnB lognBÞ in GROK. The Merge benchmark merges regions in
a pre-sorted BED file and has time complexity of OðnBÞ and

memory complexity of Oð1Þ. The Overlap benchmark computes

the OVERLAP(EBED, GENES) operation, which has time complex-

ity of OðnB þ nG lognGÞ and memory complexity of OðnGÞ. Finally,

the Complement benchmark computes “G nL EBED,” where G
represents the whole genome. Its time and memory complexities

are both OðnB lognBÞ. Benchmark source codes are distributed

along with GROK.
Results of the benchmark analyses are shown in Table 7. GROK

and BEDTools perform at comparable levels for speed and

memory efficiency. In this benchmark, BEDOPS is the fastest and

least memory consuming method, which was expected due to

performance-optimized implementation of its operations [9]. The

optimized performance of BEDOPS, however, entails stronger

assumptions for the input than GROK and BEDTools, in particular
the requirement for presorting the input BED files.

5 CASE STUDY

Cancer is a disease of uncontrolled cell proliferation where
expression levels for a number of genes are dysregulated to

promote cell processes driving cancer progression. Gene expres-

sion is mainly controlled at the transcriptional level by TFs that

bind to their cis-elements, i.e., TF-specific DNA sequences. In

prostate cancer, a key TF driving prostate cancer progression is the

androgen receptor (AR), which regulates cell growth and

differentiation in prostate and other tissues [18]. High AR

expression in a tumor correlates with poor patient survival, and

AR is a key therapeutical target in prostate cancer [19], [20]. AR
signal transduction is initiated by the binding of the cognate ligand

to the AR, which results in translocation of the AR to the nucleus.

Inside the nucleus, the AR binds to androgen response elements to

form an active TF complex with coregulatory proteins. AR-

regulated genes include several genes that have been shown to

be involved in prostate cancer development and progression, such
as the prostate-specific antigen gene. Even though AR signaling

plays a central role in prostate cancer progression, the exact roles

of AR and AR-responsive genes in prostate cancer are still poorly

understood.
Here, we demonstrate the utility of GROK in an experimental

setting where we analyzed genome-wide binding sites of AR and

its collaborating pioneer TF, the forkhead protein FoxA1 [21] in

LNCaP-1F5 prostate cancer cell line using ChIP-seq data. FoxA1

acts as a pioneer by remodeling chromatin structure in order for

AR to bind. AR expressing LNCaP cells are derived from a lymph
node metastasis of a prostate cancer patient, and the LNCaP-1F5

variant is engineered to express the glucocorticoid receptor,

another steroid receptor.
Using ChIP-seq data from our recent study [22], we searched

for chromosomal locations corresponding to the pioneering role
of FoxA1. ChIP-seq was performed on AR and FoxA1 in the

LNCaP-1F5 cells (denoted parental) and in an experiment in

which FoxA1 was depleted using siRNA (denoted siFoxA1),

totaling four experimental settings. Two biological replicate

samples were acquired for each experimental setting. In addition,

for siRNA depleted FoxA1 ChIP, two technical replicates were
done, which corresponds to a total of 2þ 2þ 2þ 4 ¼ 10 repli-

cates. Binding sites of AR and FoxA1 were determined by MACS

[23], which provided 10 region sets that were used as input for

GROK. The fold enrichment metric produced by MACS was used

as the region score function.
In FoxA1 pioneered locations, binding by FoxA1 is a

prerequisite to enable AR binding. In these locations, both AR

and FoxA1 binding is present in parental cells, and AR binding is
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TABLE 8
Algebraic Formulation of ChIP-Seq Case Study

All operations use the L interval variants of algebra operations. Biological replicates are combined with intersection, except for the FoxA1 ChIP-seq in siFoxA1 cells,
which uses a three-out-of-four operation.

TABLE 7
Performance Benchmark

For each benchmark case, execution times and peak memory usages of GROK, BEDTools, and BEDOPS are shown. Benchmarks that process BAM files were omitted
for BEDOPS as BEDOPS only supports the BED format.
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absent in FoxA1 depleted cells. Naturally, FoxA1 binding is also

expected to be absent in siFoxA1 cells. This hypothesis is encoded

using the region algebra in Table 8, demonstrating the usefulness

of a succinct notation in formalizing complex experimental
settings. Using the algebraic expression as the starting point, the

high-level functions of the R API of GROK were used to

implement the analysis in computational form. We derived scores

for pioneer regions using the min AF so that the score of final

result locations is the minimum of fold enrichments in parental
cell biological replicates. The minimum function provides a

conservative estimate of AR and FoxA1 binding enrichment over

IgG negative control.
GROK analysis resulted in 1,258 nonoverlapping FoxA1 pioneer

regions spanning 401,005 bases. These regions together with their
scores are visualized in Fig. 2. To characterize these regions in
comparison to all AR binding sites in parental cells (pAR), we
matched known DNA sequence motifs [24] against the sequences
contained within the regions. Motif matches within these two
region sets were compared to random DNA regions with the same
length distribution. As expected, AR and Fox family motifs are
enriched in both region sets (see Supplementary Data, which can
be found on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TCBB.2012.170). A difference be-
tween the pioneer and pAR regions is the occurrence of the MYC/
MAX E-box motif. It is enriched in the pAR set compared to
random DNA (fold enrichment, FE ¼ 1:3), but depleted in the
pioneer set (FE ¼ 0:58). This motif, with its 5’-CACGTG-3’
sequence, occurs with high frequency close to gene promoters in
the genome [25] and is associated with several TFs other than MYC,
such as ChREBP, SREBP, and HIF-1 [26]. While interpretation of
differential binding for the E-box motif is complicated due to the
multitude of its roles, one possible explanation is that FoxA1
pioneer regions have reduced dependency for E-box binding TFs
due to the pioneering actions of FoxA1. In this hypothetical model,
E-box binding TFs and FoxA1 could represent alternative path-
ways to AR-mediated transcription.

To validate the correctness of the GROK implementation, we
implemented a modified version of the analysis using BEDTools

2.16.2 [7]. In Table 8, we replaced the three-out-of-four operation in

sFoxA1 with intersection (\L) and used the first AF instead of

min. These modifications were necessary because these function-
ality are not implemented in BEDTools. The modified analyses
yielded identical results in GROK and BEDTools.

6 DISCUSSION

DS data analysis requires flexible, efficient, and well-documented
software to perform operations that facilitate answering research
questions based on DS data. Here, we have developed a
formalism that consists of operations often performed in DS data
analysis, and implemented them as an extensible toolkit called
GROK. It is useful in a variety of environments due to flexible
use of computational resources and the support for multiple
scripting languages.

Applications for GROK in data analysis include diverse tasks
in preprocessing and analysis such as filtering, sorting, merging,
file conversion, and comparing biological samples. For combining
and comparing samples, GROK provides a comprehensive set of
region operations such as union, intersection, difference, and
overlap queries. GROK supports both small and large data sets by
providing alternative storage options with different performance
tradeoffs. Small data sets are efficiently stored in memory,
whereas an on-disk SQL database allows working on data sets
whose intermediate results do not fit in memory. The latter is also
useful in environments with constrained memory, such as cloud
computing. Support for multiple scripting languages allows using
the toolkit in heterogeneous environments: R and Python are
popular in the bioinformatics community, and Lua is an elegant
scripting language with low overhead. GROK supports major
genomic file formats and provides a C++ extension API for
adding support for new formats, such as the BigWig/BigBed [28]
or Goby [29] formats.

Compared to existing tools, novel features of GROK include a
multilanguage API, customizable functionality for processing
numeric region scores, an SQLite region database supporting
arbitrary annotations and a modular architecture that allows
implementing custom complex operations in a high-level lan-
guage. An example of the flexibility of the API is the built-in FREQ
function, which computes a k-out-of-n filtering operation: It is
implemented directly in a scripting language using the elementary
methods exposed from the C++ API. To accommodate the need to
take advantage of biological replicates in sequencing experiments,
GROK set operations can easily be applied to an arbitrary number
of samples.

The utility of both GROK and the region algebra was
demonstrated in a prostate cancer case study in which we
investigated the pioneering role of the TF FoxA1 in AR-mediated
gene regulation. With this case study, we showed how a
biomedical hypothesis can be encoded in algebraic form using
the region algebra and the resulting formulas were translated into
an executable GROK script. The case study demonstrates that
GROK can facilitate answering biomedical research questions and
establish experimentally testable predictions. GROK forms a part
of an analysis workflow that is composed of upstream analysis,
such as sequence alignment and peak detection, and downstream
analysis, such as motif matching. This highlights the importance of
flexibility in the design of GROK as it can be used in various
experimental settings. GROK is freely available with a compre-
hensive user manual.
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Fig. 2. ChIP-seq case study results visualized using Circos [27]. Each dot
represents a genomic region that corresponds to the pioneering role of FoxA1.
Distance from the inner circle indicates the composite logarithmic fold enrichment
score using the min AF, with low values being near the center. The linear range of
fold enrichments is 6 to 125. Highlighted is a region in chromosome 2 that
produced one of the 1,258 result regions by combining information from all
10 samples. In the right, short read coverages of samples are visualized in the
same order as in Table 8 so that replicate samples are next to each other. The red
region indicates the pioneer peak regions.
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