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Abstract

Motivation: Transcription factor (TF) binding can be studied accurately in vivo with ChIP-exo and

ChIP-Nexus experiments. Only fraction of TF binding mechanisms are yet fully understood and ac-

curate knowledge of binding locations and patterns of TFs is key to understanding binding that is

not explained by simple positional weight matrix models. ChIP-exo/Nexus experiments can also

offer insight on the effect of single nucleotide polymorphism (SNP) at TF binding sites on expres-

sion of the target genes. This is an important mechanism of action for disease-causing SNPs at

non-coding genomic regions.

Results: We describe a peak caller PeakXus that is specifically designed to leverage the increased

resolution of ChIP-exo/Nexus and developed with the aim of making as few assumptions of the

data as possible to allow discoveries of novel binding patterns. We apply PeakXus to ChIP-Nexus

and ChIP-exo experiments performed both in Homo sapiens and in Drosophila melanogaster cell

lines. We show that PeakXus consistently finds more peaks overlapping with a TF-specific recogni-

tion sequence than published methods. As an application example we demonstrate how PeakXus

can be coupled with unique molecular identifiers (UMIs) to measure the effect of a SNP overlap-

ping with a TF binding site on the in vivo binding of the TF.

Availability and Implementation: Source code of PeakXus is available at https://github.com/harto

nen/PeakXus

Contact: tuomo.hartonen@helsinki.fi or jussi.taipale@ki.se

1 Introduction

Transcription factors (TFs) bind to TF-specific recognition se-

quences. These binding sequences can be experimentally determined

in vitro, for example by SELEX (Jolma et al., 2013) or protein-bind-

ing microarrays (PBMs) (Berger et al., 2006; Mukherjee et al.,

2004). It is, however, also known that TFs bind to sites in the gen-

ome that do not feature a specific binding sequence and the reason

for this remains largely unknown. To understand the mechanisms

behind this phenomenon, TF binding positions need to be measured

accurately and reliably in living cells.

Methods for studying TF binding in vivo have been available al-

ready over three decades (Gilmour and Lis, 1984), but genome-wide

high-throughput studies have been possible only after the invention

of ChIP sequencing (ChIP-seq) (Barski et al., 2007). ChIP-seq re-

ports regions bound by a specific TF but the regions can be hundreds

of bps wide and arise due to different binding mechanisms. Recent

upgrades to ChIP-seq, ChIP-exo (Rhee and Pugh, 2011) and ChIP-

Nexus (He et al., 2015), have brought the resolution of genome-

wide TF binding assays to one bp regime.

The modification in ChIP-exo is the use of k-exonuclease to di-

gest double-stranded DNA not bound by proteins in 50–30 direction

after enriching protein-bound DNA-regions of interest with a spe-

cific antibody. Otherwise the experiment is largely similar to ChIP-

seq. The difference the k-exonuclease makes is, however, fundamen-

tal. In ChIP-seq, the random shearing of protein-bound DNA leads

to fragments where the exact location of the binding site within the

fragment is unknown, whereas in ChIP-exo, the k-exonuclease

moves the 50-end of each DNA-strand close to where the protein

was bound. A schematic view of reads around a ChIP-exo/Nexus

binding site is shown in Figure 1a. Digesting the 50-end of a fragment

causes loss of the adapter sequence from that end, which has to
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subsequently be re-ligated. In ChIP-exo, this is done via intermolecu-

lar ligation, whereas in ChIP-Nexus, this step is replaced with circu-

lar ligation that enhances the efficiency of the protocol (He et al.,

2015).

As is the case with all next-generation sequencing applications,

the vast amount of data from high-throughput ChIP experiments re-

quires computational and statistical tools for interpretation. In

ChIP-seq, the computational analysis aiming at separating the true

binding events from noise is known as peak calling. There exists a

plethora of peak calling software for analyzing ChIP-seq data.

Maybe the most widely used being MACS (Zhang et al., 2008), and

other popular examples being SiSSRs (Jothi et al., 2008) and QuEST

(Valouev et al., 2008). Even the best ChIP-seq peak callers are lim-

ited by the ramifications of the experiment. They are not optimal for

accurate localization of binding sites from ChIP-exo/Nexus experi-

ments, as the signal generated by TF binding is different from that of

ChIP-seq. We test our method against two published ChIP-exo peak

callers, Peakzilla (Bardet et al., 2013) and MACE (Wang et al.,

2014). Peakzilla has already been shown to outperform MACS,

SiSSRs, QuEST and several other methods which is why Peakzilla is

assumed to represent the state-of-the-art ChIP-seq peak caller

(Bardet et al., 2013).

ChIP-seq can be used to study the effect of single nucleotide

polymorphism (SNP) at TF binding sites (Bailey et al., 2015;

Waszak et al., 2014). Many diseases are associated with SNPs at

non-coding genome regions (e.g. Butter et al., 2012). Often the

mechanism how such a SNP causes a disease is not known. One sug-

gested explanation is that the disease-associated SNPs may overlap

important TF binding sites and a disease-associated risk allele could

have a great effect on the binding of the TF and thus alter the expres-

sion of the gene controlled by the affected binding site. ChIP-exo

and ChIP-Nexus are better suited for allele-specific binding studies

than ChIP-seq because ChIP-exo/Nexus reads aggregate closer to

the TF binding site leading to higher count of unique reads overlap-

ping with a SNP. This is important as SNPs that directly overlap

binding sites are likely to have a larger effect on TF binding than

ones that are flanking binding sites.

Several recent studies have shown the importance of small muta-

tions at non-coding regions of many cancer genomes. Katainen et al.

(2015) show that CTCF/cohesin binding sites are often mutated in

multiple cancer types and Sabarinathan et al. (2015) report that TF

binding interferes with the nucleotide excision repair machinery re-

sulting to higher mutation rate at TF binding sites compared with

their flanks in melanoma tumors. Moreover, two recent studies have

confirmed mutations at TF binding sites causing cancer. In Horn

et al. (2013), it is shown that a mutation creating only one add-

itional binding site for Ets-family TFs and ternary complex factors

at the promoter region of TERT-gene causes up to two-fold increase

in transcription. The mutation was observed in a high fraction of

cell line and tumor samples from metastatic melanoma. In addition,

Mansour et al. (2014) observed that series of small insertions create

binding sites for MYB-family TFs in the promoter region of TAL1-

oncogene leading to allele-specific expression of TAL1 in a subset of

T-cell acute lymphoblastic leukemias.

We present here a peak caller specifically designed to leverage

the increased accuracy of novel experimental methods for studying

Fig. 1. Peak calling criteria. (a) Determination of a candidate peak in the presence of one true TF-DNA binding event. (b) Determination of a candidate peak in the

presence of two binding events. Red arrows are reads mapped to the sense strand and blue to the antisense strand. Reads point from 50 to 30 direction. The red

and blue bar charts below the reads correspond to counts of 50-ends of reads (or UMIs) on the sense and antisense strands, respectively. Reads pointing toward

the candidate peak center (the middle position between the borders on the sense- and antisense strands) are assumed to be true signal, while reads pointing

away from the candidate peak center are assumed to be noise, as the k-exonuclease stops at the 50-side of a bound protein. Read 50-end counts between the re-

gions on red (signal) and blue (noise) background are compared against each other to separate true binding events from background noise
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TF binding in vivo in an unbiased manner. Our emphasis is on filter-

ing out false binding events by criteria well motivated by the experi-

mental design while avoiding any unnecessary assumptions about

the outcome of the experiment. We show that using unique molecu-

lar identifiers (UMIs) (Kivioja et al., 2012) to count the original

number of observed molecules bypasses the need to use sophisti-

cated modeling of duplicate reads, especially when analyzing allele-

specific TF binding. We have also compared our peak calling algo-

rithm with existing ones in the literature both in ChIP-exo and in

ChIP-Nexus settings. Importantly, we demonstrate the ability of our

algorithm, PeakXus in allele-specific analysis of TF binding with

ChIP-Nexus data.

2 Related work

Peakzilla (Bardet et al., 2013) not only is a peak caller primarily de-

signed for ChIP-seq but is also capable of analyzing ChIP-exo experi-

ments. The design principle of Peakzilla is to have a parameter-free

peak caller that learns the shape and size of binding sites from the

data. Peakzilla first estimates the peak width by calculating the aver-

age distance between sense and antisense reads on the top 200 most

enriched regions and multiplying it by two. Next, expected distribu-

tions of sense and antisense strand peaks are modeled as normal dis-

tributions with a standard deviation equaling to the peak width

divided by five, and locations at one-fourth and three-fourth of the

peak width. This somewhat arbitrary model is later used to assess if

peaks fit the ‘expected’ shape of the signal of a binding event.

Peakzilla identifies binding sites by scanning the genome with a

half-peak-sized sliding window that computes the total read count

on the sense strand downstream from the current index, and within

a same sized window upstream on the antisense strand. The final set

of peaks consists of such peak pairs that are local maxima at least

half of a peak size apart from each other. To obtain the final peak

score, the total read count is multiplied with a distribution score.

Distribution score is calculated by fitting the shape of the sense-,

and antisense strand peaks to the expected normal distributions.

The other tested ChIP-exo peak caller is MACE (Wang et al.,

2014). Its core principle is to detect so called ‘borders’, which are

highly enriched positions along the genome and are thus expected to

represent the borders of a bound TF at the positions where the k-

exonuclease stopped. Borders from opposite strands are paired using

the stable matching algorithm. Scoring of the border pairs is based

on the total read count, as well as the distance between the borders.

Optimal border pair distance is obtained by estimating it empirically

from a subset of high-confidence border pairs.

There are few key reasons for developing a new ChIP-exo peak

caller. First, both Peakzilla and MACE mainly find peaks of a fixed

size because they are designed to find peaks that are as wide as the

average best scoring ones. This can, however, lead to missing some

real events, for example in situations where two TFs bind very close to

each other. It is also known that some TFs recognize several binding

motifs that can be of different widths (e.g. Jolma et al., 2013), which

might confuse a method that is designed to find peaks of essentially

fixed width. On top of that, we think it is important to devise a method

that makes as few assumptions of the distribution of reads and width

of the binding site as possible to allow unbiased discovery. Our only

assumption is that the k-exonuclease aggregates read 50-ends at the

borders of bound proteins, as illustrated in Figure 1. We also believe

that using UMIs to remove duplicates and to conserve the information

about the count of initial molecules is important for critical applica-

tions like allele-specific binding analysis, where it is essential to know

accurately the number of fragments originating from each allele.

3 Algorithm for TF binding site detection

3.1 Duplicate filtering using UMIs
UMIs (Kivioja et al., 2012) are a means to retain information about

the original number of molecules in a sequencing library. PCR-

amplification is known to suffer from amplification bias resulting to

some of the initial molecules being amplified more than others (e.g.

Aird et al., 2011). UMIs can be used to circumvent this problem by

attaching a random DNA-sequence label to each of the molecules in

the initial library. If the number of available labels is sufficient, it is

extremely unlikely for two different molecules with the same UMI-

label to map exactly to the same genomic position. This means that

as long as the complexity of the library is preserved it can be ampli-

fied and normalized freely without losing information about the ori-

ginal number of molecules. After sequencing at sufficient depth, all

identical UMIs mapping to same positions can be treated as dupli-

cates, and the original number of molecules can be estimated by

counting each UMI-label once per position.

In ChIP-seq, peaks caused by TF binding are wide and broad,

and the sensitivity of peak calling does usually not suffer from

removing duplicated reads by simply deleting all reads that map to

identical location and strand. This strategy is no longer viable in

ChIP-exo/Nexus, because theoretically true ChIP-exo/Nexus binding

events look very much like artifacts caused by PCR-duplicates, as

seen from Figure 1! UMIs allow discarding duplicated reads without

removing borders caused by true binding events.

3.2 Discovering candidate peaks
Read count on sense strand is marked with cþ(i) and on antisense

strand c–(i) at genomic coordinate (base pair) i. Each read is saved

corresponding to the location of the 50-end of the read as the k-exo-

nuclease stops at the 50-end of a bound protein. Two schematic ex-

amples of how the read count profile is built can be seen in Figure 1.

When UMIs are used, cþ(i) and c–(i) represent counts of unique

molecules.

A TF-DNA binding event in a ChIP-exo/Nexus experiment

should be located between ‘borders’ on the sense and antisense

strands because the k-exonuclease should always stop at the edge of

a bound protein. Theoretically, we expect to see signatures as wide

as the bound protein or protein complex completely devoid of reads

in the middle, with a large amount of reads mapping to the sense

strand on the left side, and to the antisense strand, on the right side

of the binding site, as illustrated in Figure 1a.

Thus the first phase of binding site recognition is to search for

these transition points. The algorithm goes through the genome

looking for positions where the total read 50-end count cþðiÞ � c�ðiÞ
< 0 and cþði� 1Þ � c�ði� 1Þ � 0. For each such position, index of

the left border of the candidate peak is k ¼ arg maxfcþðkÞ � c�ðkÞg
such that i– w<k< i and cþðkÞ � c�ðkÞ > 0. Similarly for each such

position, index of the right border of the candidate peak is j ¼ arg min

fcþðjÞ � c�ðjÞg such that i� j< iþw and cþðjÞ � c�ðjÞ < 0. A candi-

date peak is accepted only if both c–+(k)�c–�(k) > 0 and c–+(j)�c–�(j)

< 0. At this point, we store all the candidate peaks even if they overlap.

The true peak among overlapping ones is decided after a peak score

has been calculated for all candidate peaks.

3.3 Significance testing and removing overlapping

peaks
The read 50-end counts from ChIP-exo/Nexus binding events exhibit

two distinct features. First, true events should have a high total read

50-end count around the binding site, and as earlier discussed, there

should be the signature borders on opposite strands flanking the
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site. To account for both these features, we propose a scoring

scheme illustrated in Figure 1.

The underlying idea of this scheme is that due to the k-exonucle-

ase digesting DNA from 50 to 30 direction, only reads pointing to-

wards the center of a candidate peak can be regarded as resulting

from true binding events. This means that ideally there should not be

any 50-ends of reads mapping to areas with blue background, but in-

stead the areas with red background should have a plenty of reads

(Fig. 1a). Moreover, if distance from a candidate peak summit is cal-

culated for each 50-end of a read, the red areas should give rise to a

high number of distances approximately equal to half of the length of

the candidate peak, while the blue areas should lack any pattern since

the few reads observed there should be randomly positioned. To clar-

ify the division into signal and background, background reads are

drawn with a dashed line. To separate signal from background, we

thus create histograms of distances between each read 50-end and the

candidate peak summit separately for both the red and blue regions,

and compare these distributions against each other to determine if

the signal-region (red) is different from the background-region (blue).

In reality, the binding signatures can be more complex than in

the simple example in Figure 1a. In many cases, two (or sometimes

more) proteins bind close to each other, producing two sets of bor-

ders in ChIP-exo/Nexus experiments, as the random shearing of

DNA creates both fragments that contain both, and fragments that

contain only one of the bound proteins. Even though being geared

towards finding single TF binding events to avoid making assump-

tions of the shape or size of the binding signature, PeakXus will not

overlook more complex events, as illustrated in Figure 1b. The read

density distributions on the red and the blue background are still sig-

nificantly different from each other, since only other half of the sig-

nal region gets convoluted with the reads that belong to another

binding event.

3.3.1 Distinguishing true events from background

Let us denote the non-normalized frequency distribution of distances

between background read 50-end and candidate peak summit for a

given candidate kj (k marking the left edge coordinate and j the right,

respectively) with Bkj, and with Skj for distances between signal read

50-ends and candidate peak summit. Then, the G-test statistic is

Gkj ¼ 2
Xdmax

i¼0

Skj
i ln

Skj
i

Bkj
i

 !
; (1)

where index i enumerates all possible distances excluding the ones

where Bkj
i ¼ 0, i.e. the positions where the read 50-end count at pos-

ition i is zero. The maximum allowed distance is determined by the

edges of the candidate peak kj, denoted with kkj being the left edge

and jkj being the right edge, considering also the d immediate flank-

ing positions. In other words, the maximum distance between a 50-

end of a read and the peak candidate summit for candidate kj is

dmax ¼ jkj�kkj

2 þ d. We used d¼5 as a default to allow some uncer-

tainty for the stop base of the k-exonuclease.

The G-test is our method of choice because its test statistic ap-

proximates the v2-distribution better than Pearson’s v2-test

(Harremo€es and Tusn�ady, 2012). This test addresses both the dis-

tinctive features described above as it gives a larger test statistic

value (smaller P value) both when Skj
i ’s and Skj

i =B
kj
i ’s are large.

3.3.2 Pseudocount

By definition, G-test does not account for distances that are not

found from the distribution of background distances. This can be

problematic, since the assumption is that especially at the immediate

flanks of a bound TF, there is a lot of true signal and minimally

background noise. G-test overlooks these differences if Bkj
i ¼ 0 even

though these are especially the kind of differences we want to cap-

ture. To solve this problem, we applied the pseudocount-approach

(Durbin et al., 1998). After measuring the distances between all

reads and the summit of the candidate peak, a constant p is added to

each Bkj
i and Skj

i . This leads to the final test statistic

Gkj
pseudo ¼ 2

Xdmax

i¼0

ðSkj
i þ pÞln Skj

i þ p

Bkj
i þ p

 !
: (2)

Given Gkj
pseudo, a P value is then calculated from the v2 cumula-

tive distribution function. The null hypothesis that the background

and signal distributions are identical is rejected if P value<0.05, the

same significance threshold is used also in Peakzilla and MACE. A

pseudocount accounts for the fact that there exists a non-zero prob-

ability of observing reads at any position, but due to the large size of

the genome and a limited sample size, only a fraction of the pos-

itions are covered by reads.

3.3.3 Peak score

The final ranking of peaks is based on a peak score. With the peak

score, we want to emphasize that given two peaks where the differ-

ence between the background and signal regions is small, the peak

with a higher total read count is likely more important. Thus each

peak is assigned a score

SCkj ¼ Gkj
Xbmc

i¼kkj�d

cþðiÞ � c�ðiÞ þ
Xjjkþd

i¼dmeþ1

c�ðiÞ � cþðiÞ

0
@

1
A; (3)

where the middle position of the candidate peak is m ¼ ðkkj þ jkjÞ=2.

Coming back to the issue of two proteins binding close to each other,

using the testing and scoring scheme presented above can lead to a

somewhat smaller score for a peak that is flanked by another peak if

the signal reads of the flanking peak overlap with the background-

region of the first peak, as is illustrated in Figure 1b. However, strong

binding events will not be missed even if flanked by another binding

protein.

In a nutshell, the following steps are performed for all candidate

peaks: (1) calculate the P value using G-test. If P value is larger than

0.05, then discard the candidate. (2) Calculate the peak score for all

remaining peaks. (3) Find all sets of overlapping peaks and discard

all others but the peak with the highest peak score from each set. (4)

Calculate false discovery rates using the Benjamini–Hochberg pro-

cedure for dependent test statistics (Benjamini and Yekutieli, 2001)

using the initial number of candidate peaks as the total number of

tested null hypotheses.

4 Data and resources

The in-house CTCF ChIP-Nexus experiment was conducted on

human LoVo-cell line (adenocarcinoma of the colon). DNA-

fragments were sequenced with Illumina HiSeq2000-sequencer. The

experiment uses UMI-labels of length 5 that include all possible

combinations of A, C, G and T. Reads were aligned against the

hg19-reference genome using the Burrows–Wheeler alignment tool

(Li and Durbin, 2009) and specifically the bwa aln-algorithm, with

default parameters. The SAMtools and BEDtools toolkits (Li et al.,

2009; Quinlan and Hall, 2010) were used to perform e.g. filtering

(MAPQ<20 used for all experiments) and various genome arith-

metics tasks.
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The MAX and TWIST ChIP-Nexus experiments used in this

work are published in He et al. (2015). These experiments were per-

formed in Drosophila melanogaster cells and were aligned to dm3

reference genome with bwa aln-algorithm with default parameters.

These experiments utilize similar UMI-design as described above for

CTCF ChIP-Nexus.

The CTCF ChIP-exo experiment by Katainen et al. (2015) was

aligned to hg19 similarly as described above. The CTCF ChIP-exo

experiment by Rhee and Pugh (2011) was downloaded readily

aligned. These experiments do not utilize UMIs.

The whole genome sequencing (WGS) experiment was con-

ducted on the same LoVo-cell line used in the in-house ChIP-exo/

Nexus experiments. Sequencing was performed as paired-end

sequencing with Illumina HiSeq2000. Reads with identical start and

end positions for the both paired fragments were discarded as

duplicates.

The in vitro binding specificities of TFs can be presented as pos-

itional weight matrices (PWMs) that give the affinity of a given TF

towards any DNA-sequence of given length. Using PWMs, it is pos-

sible to scan the genome for hits of the binding motifs and rank the

resulting regions according to their affinity towards the given TF.

This requires both the PWMs and a software for scanning the gen-

ome. These PWM hits to the reference genome are called high-

affinity recognition sequences (HARSs) of the TF. It is expected that

the true occupied binding sites are enriched at HARS sites relative to

other positions, but not all the HARS sites bind the corresponding TF

in vivo due to for example the local chromatin context. The CTCF-

PWM used in this work is from Jolma et al. (2013) and the

Drosophila melanogaster PWMs are from the JASPAR database

(Mathelier et al., 2013) (MAX: MA0058.3 and TWIST: MA0249.1).

The lists of locations of binding motifs on the reference genomes

were produced with the MOODS software (Korhonen et al., 2009).

Variant calls used in this work were obtained from the 1000

Genomes database (1000 Genomes Project Consortium, 2010). The

initial phase 3 release of the database includes more than 79 million

variant sites. We used the initial phase 3 SNPs to assess the allele

specificity of CTCF binding.

5 Results

To make the comparison among PeakXus, MACE and Peakzilla as

neutral as possible, all methods were run with their default param-

eters with one exception: Peakzilla reported considerably fewer

peaks than the other methods when using the default parameter val-

ues. Therefore, we used input flags ‘-c 0 -s 0’, where c is the fold en-

richment cut-off and s the peak score cut-off. The default

parameters for PeakXus are the following: maximum binding site

width w¼60 bps, number of flanking bases considered when calcu-

lating peak score d¼5, pseudocount p¼1. UMIs were used by

PeakXus when available. As neither MACE nor Peakzilla offers a

method for controlling the false discovery rate (FDR) for ChIP-exo/

Nexus experiments, PeakXus was also run without controlling for

FDR. GeneTrack (Albert et al., 2008) is a method essentially listing

the most enriched ChIP-exo/Nexus genomic sites without making

any more sophisticated analysis. Therefore, the results obtained

with GeneTrack are shown as a baseline in Figures 2 and 4.

TF binding occurs both at sites with a TF-specific high-affinity

recognition sequence (HARS) and at sites devoid of such sequences.

Thus, there is no absolute way to assess if a peak reported by a peak

caller corresponds to a true binding event. It is nevertheless reason-

able to assume that a large fraction of the strongest peaks overlap

with an HARS, as these are the sites that are known to bind the cor-

responding TF strongly. Not all the binding sites are accessible to

binding. It is known that local chromatin context is a major deter-

minant of where TFs bind (e.g. Li et al., 2011). DNA methylation

has also been shown to reduce TF binding (Wang et al., 2012).

Thus, the expectation is to observe both peaks that lack the underly-

ing HARS as well as locations with an HARS that do not bind the

associated TF in the ChIP-exo/Nexus experiments.

Figure 2 shows how many of the peaks found by a given peak

caller overlap with HARS sites for three different CTCF experiments

(one ChIP-Nexus and two ChIP-exo) on human and two ChIP-

Nexus experiments (MAX and TWIST) on Drosophila melanogaster

cells. Slopes of the curves indicate the efficiency of finding peaks

overlapping with a TF-specific HARS. It is seen that for the very top

Fig. 2. (a) Total number of high affinity recognition sequences (HARS) found from ChIP-exo/Nexus experiments as a function of top scoring peaks analyzed. The

y-axis corresponds to the number of HARSs that were found to overlap with x (value shown on the x-axis) top peaks. Peaks were sorted by the score given by

each peak caller. A peak was considered to match with an HARS if distance between the center of the HARS and the center of the peak was less than or equal to

20 bps. A total of 300 000 highest affinity HARS sites were considered both for human CTCF experiments and for fly MAX and TWIST experiments. For

GeneTrack, the same amount of top peaks is shown as is reported by PeakXus. (b) Canonical CTCF binding sequence as measured in Jolma et al. (2013)
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peaks, there is negligible difference in the efficiency of finding peaks

with an HARS. Efficiency drops significantly faster for MACE than

for the other methods. Highest points of the curves reveal that

PeakXus consistently finds more peaks with an underlying HARS

than the other tested methods.

One way to compare peak callers is to look at how different are

the peaks reported by them that the other methods do not find. To in-

vestigate this, we selected for each method only the peaks that the

other two methods did not report and repeated the analysis shown in

Figure 2. Comparison for the three CTCF experiments is shown in

Figure 3(a1–a3), now cutting the x-axis after 20 000 peaks to focus on

the highest scoring peaks. As expected, the peaks reported by all three

methods contain a notably higher fraction of peaks with a match to an

HARS than the peaks specific to any given method. Peakzilla finds less

than 100 peaks the other methods do not from two of the three experi-

ments, and thus these curves are not clearly visible. Importantly,

PeakXus reports in total considerably more peaks that are not found

by the other two methods but still co-occur with a CTCF HARS.

Surprisingly, we observe that only a few percent of the peaks

found by MACE alone overlap with a CTCF HARS. A possible ex-

planation for this could be that there is another sequence CTCF

binds to that yields such a different signal that PeakXus or Peakzilla

miss these peaks. To further investigate this, we analyzed the top

1000 method-specific peaks with MEME-software (Bailey et al.,

2006). MEME is a tool that finds significantly enriched sub-

sequences occurring in a set of input sequences. As an input, we

gave the 100 bp-wide regions centered around the top 1000 peaks.

MEME was evoked with parameters ‘-dna -mod anr -nmotifs 5 -

maxsites 1000 -minw 4 -maxw 50 -revcomp’. The top motifs found

by MEME are shown in Figure 3(b–d) at the corresponding columns

for each experiment and at the corresponding rows for each peak

caller. On the left hand side of each motif is shown the correspond-

ing average read 50-end counts around the same top 1000 method-

specific peaks. Comparing the found sequence motifs to the in vitro

motif in Figure 2b, it is seen that the expected CTCF motif is found

by PeakXus from all the experiments as the best-scoring motif.

MEME finds the CTCF in vitro motif from 2/3 sets of Peakzilla-spe-

cific peaks and from 0/3 sets of MACE-specific peaks. Furthermore,

the read densities of the top method-specific peaks show that the

peaks reported by PeakXus have a signature where most of the sense

strand reads are on the left side of the peak summit and antisense

strand reads on the right side of the peak summit, relatively close to

the peak center. Read densities specific to Peakzilla and MACE

peaks are radically different. The read counts around Peakzilla-

specific peaks are low, meaning the corresponding binding events

are weaker. MACE-specific peaks, in turn, do have the borders on

opposite strands around the summit, but they completely lack the

CTCF-motif. It is also interesting to note that the read density pro-

files of peaks specific to PeakXus exhibit multiple maximas around

the peak middle position. This suggests that these signatures corres-

pond to binding events where multiple TFs are bound close to each

other producing multiple sets of borders, as described in the

Introduction. All in all, PeakXus reports significantly more peaks

coinciding with a CTCF HARS than MACE or Peakzilla.

Fig. 3. Analysis of peaks specific to each of the peak callers in CTCF-experiments. Methods are color coded as the following: Peakzilla¼ cyan, MACE¼blue,

PeakXus¼ red and the peaks reported by all methods are plotted in black. Leftmost column (from a1 to d1) corresponds to results from our in-house ChIP-Nexus

experiment, middle column (from a2 to d2) to ChIP-exo experiment from Katainen et al. (2015) and rightmost column (from a3 to d3) to ChIP-exo experiment

from Rhee and Pugh (2011). (a1–a3) The y-axis corresponds to the number of high-affinity binding sites (HARSs) that were found to overlap with x (value shown

on the x-axis) top peaks. Only 20 000 highest scoring peaks are shown for clarity. A peak was considered to match with an HARS if distance between the HARS

center and the peak center was less than or equal to 20 bps. For each method, only the peaks that did not overlap with any of the peaks found by the other two

methods were included. Peakzilla-specific peaks are so few (in-house ChIP-Nexus: 496, Katainen et al. ChIP-exo: 11, R&P ChIP-exo: 94) that the curves are hardly

visible. (b1–b3) More detailed analysis of the top 1000 peaks specific to PeakXus. Each column contains on left the average read 50-end count around the peak

center for sense- (red) and antisense (blue) strands. On the right are shown the both orientations of the best motifs reported by MEME. The number of hits to the

best scoring MEME-motif among the top peaks is shown below each of the motif pairs along with the corresponding E-value reported by MEME. (c1–c3) More de-

tailed analysis of the top 1000 (or less, if 1000 were not found) peaks specific to Peakzilla and d1–d3) MACE
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Figure 4 shows the localization accuracy of the top 1000 peaks

reported by each method with respect to HARS sites in CTCF ChIP-

exo/Nexus experiments. Around 20% of the top 1000 peaks localize

within 5 bps of the HARS center regardless of the peak caller.

Respective superiority of the peak callers in precisely localizing the

summits of the top peaks seems to strongly depend on the experi-

ment, as none of the methods consistently outperforms the others.

6 Allele-specific binding analysis

Determining allele specificity of TF binding in ChIP experiments is

in principle simple. For each polymorphism, one needs to retrieve all

reads mapping to the location and just count the fraction of reads

mapping to each allele. Straightforward comparison of read counts

mapping to different alleles has, however, serious caveats. PCR-

amplification can introduce library amplification bias which can re-

sult into false-positive allele-specific binding (ASB) calls. There have

been attempts to control this in ChIP-seq ASB analysis in the past

(Waszak et al., 2014). However, the problem can be made trivial by

using UMIs in the experiment, as each UMI represents a distinct

molecule in the initial library and if there are enough UMI-labels in

use, the number of initial molecules in the library can always be ac-

curately recovered. Even if PCR amplifies all reads evenly, measur-

ing ASB from difference between read counts mapping to different

alleles is problematic when sequencing deeply. With high enough

read counts any small difference stemming from any artifact will

eventually result into a statistically significant result. Using UMIs,

this does not happen as there will never be more UMIs than initial

molecules in the library.

Second, a naı̈ve expectation is to observe 50% of the reads to

map to each of the alleles. However, biases caused by copy number

variation, clonal heterogeneity or the tendency of reads to map bet-

ter to the reference than the alternate allele can render this null hy-

pothesis unrealistic. These biases can be controlled by calculating

the genomic allelic ratio (gAR) (Bailey et al., 2015; Degner et al.,

2009) from the WGS reads of the genome used in the ChIP experi-

ment and using this ratio as the null expectation. The gAR is simply

fraction of reads that overlap with a given SNP mapping to the refer-

ence allele.

Outline of the ASB analysis is simple: (1) select the SNPs that

overlap with a peak. (2) Filter out duplicated reads by counting each

UMI-label once per position. (3) Obtain a list of nucleotides overlap-

ping with each SNP from the filtered reads. (4) Test each SNP-

position for significant ASB. Most of the steps are straightforward

except the significance testing, which is discussed in detail below.

To avoid including homozygous SNPs to our analysis, all SNP-

locations with less than three WGS reads with unique positions for

both ends of paired-end reads per allele were discarded.

After step three, our goal is to compute if the fraction of reads

mapping to reference allele in ChIP experiment significantly differs

from the fraction of reads mapping to reference allele in the WGS

experiment for each SNP. The null hypothesis is that there is no dif-

ference. To test if the null hypothesis holds, we assume that we draw

reads (in the case of WGS) or UMIs (in the case of ChIP) overlapping

a SNP from a large pool of reads with replacement. This means that

observing one UMI does not alter the probabilities of observing any

of the UMIs. This is a reasonable assumption as we are actually sam-

pling from the pool of PCR-duplicates of the original molecules,

which is for practical purposes infinite even though the number of

observed binding events might be small for one SNP. Drawing a

read/UMI that overlaps with the SNP of interest is a rare event.

With these assumptions, one could calculate the local gARs from the

WGS experiment and use these as the parameters of binomial test to

determine if the allelic ratios differ between the experiments (Bailey

et al., 2015; Degner et al., 2009; McDaniell et al., 2010; Rozowsky

et al., 2011). This, however, assumes that there is no error in the

gARs. To account for the uncertainty of the gARs caused by the

varying coverage of the WGS reads, we use the general probability

distribution governing occurrence of the same rare event in duplicate

experiments (Audic and Claverie, 1997). The two experiments are

viewed as replicates with k reads that overlap with the SNP i map-

ping to reference allele in the ChIP experiment while n reads are

observed to map to reference allele in the WGS experiment. Thus

the probability of observing k given n by chance is

PiðkjnÞ ¼
N2

N1

� �n ðkþ nÞ!
k!n!ð1þN2=N1Þkþnþ1

; (4)

where N1 is the total number of reads overlapping with SNP i in

ChIP and N2 in WGS experiment. Pi(kjn) is calculated for each SNP

and treated as the test statistic.

6.1 Allele-specific binding analysis in CTCF ChIP-Nexus
We performed whole genome sequencing for the LoVo-cell line and

calculated the gARs from the WGS reads. These gARs were used as

the control for allele-specific binding (ASB) of CTCF in a ChIP-

Nexus experiment. Table 1 shows statistics of the ASB analysis. In

the following, we study how SNPs that change the binding sequence

of CTCF affect binding and thus focus on SNPs that overlap with a

high-affinity recognition sequence (HARS) and a peak.

Fig. 4. Localization accuracy of peaks in three ChIP-Nexus and two ChIP-exo experiments. The y-axes show the fraction of top 1000 peaks that are within x bps

(shown on the x-axis) of a high-affinity recognition sequence (HARS). Distance is measured between the center of an HARS and center of a peak
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It is reasonable to assume that the SNPs directly overlapping

with a CTCF HARS have a larger effect on CTCF binding than the

SNPs that lay further away. If using UMIs to discard duplicated

reads helps in detecting ASB events, we would expect UMIs to separ-

ate the SNPs overlapping with an HARS from other SNPs better

than if the analysis is conducted with raw reads. This means we ex-

pect the UMI-analysis to report higher fraction of SNPs to be signifi-

cant under the HARS sites relative to other positions. Using UMIs,

we observe 2.04 times higher fraction of SNPs to be significant

under an HARS relative to the 16 motif-flanking bps (Fpeak
UMI=F

flank
UMI ).

Without UMIs, this fraction is 1.66 (Fpeak
read =F

flank
read ). When comparing

the SNPs under an HARS to region 50 bps–58 bps away from a

CTCF HARS, we observe 3.52 times higher fraction of SNPs to be

significant under an HARS with UMIs (Fpeak
UMI=F

50bp
UMI ), and 2.83 with-

out UMIs (Fpeak
read =F

50bp
read ). This suggests that UMIs help to distinguish

the SNPs underlying an HARS from other SNPs.

Reference allele ratio (Nref =ðNref þNaltÞ, where Nref is the num-

ber of hits to reference allele and Nalt to alternate), should depend

more or less linearly on the affinity change a SNP causes to a TF

binding site. This is because the more a SNP changes affinity of the

binding sequence, the larger should be the difference in binding be-

tween the alleles. Figure 5 shows scatter plots of reference allele

ratio versus affinity change of the CTCF recognition sequence due

to a SNP for the in-house CTCF ChIP-Nexus experiment. The cor-

relation is stronger when using UMIs indicating that UMIs help to

discard false-positive ASB calls.

Methylation of CG sites in the binding motif disrupts CTCF-

binding (Wang et al., 2012), which could explain some outliers in

Figure 5. Let us assume that we have a reference CTCF-binding site

AGCAGACCTAGTGGTA (sequence 1), and a SNP A!G at pos-

ition four, changes it to AGCGGACCTAGTGGTA (sequence 2).

Comparing with the in vitro CTCF recognition sequence in Figure

2b, sequence 2 should have a higher affinity towards the CTCF pro-

tein (reference allele ratio<0.5). However, the mutation introduces

an additional CG to positions 3–4, which can potentially lead to

methylation of the site and stronger observed binding to sequence 1

even though it has lower affinity towards the recognition sequence.

However, we observe no obvious outliers that could be caused by

methylation based on the ASB analysis conducted using UMIs.

7 Conclusions and discussion

We have shown that the developed ChIP-exo/Nexus peak caller is a

valuable addition to the computational tools available for studying

TF binding locations and patterns in vivo. The main advantages of

PeakXus compared with the previously published methods are at

least 2-fold. First, PeakXus constantly reports more peaks that over-

lap with known strong binding sites than MACE and Peakzilla. This

is currently the most reliable way to asses if the reported peaks cor-

respond to true binding events. Second, PeakXus does not achieve

this by fitting all peaks to a profile based on a fraction of sites with

high read counts, an approach taken by the other two peak callers.

Fitting to high coverage sites is a safe approach as the high coverage

sites correspond to true binding events with high likelihood.

However, this can also be dangerous, since it can lead to missing

some weaker binding patterns that result in a differently shaped

signal.

Current peak callers cannot localize peak summits with the

advertised one-base pair resolution of ChIP-exo/Nexus for others

than the very top peaks, as shown in Figure 4. Peak localization

accuracies of all the tested methods are very similar for the top 20%

of the most accurately localized peaks, after which there is some de-

viation depending on the experiment. There are at least two possible

reasons as for why only 20% of the best scoring peaks are within 5

bps of the high-affinity recognition sequence (HARS) center. The

most obvious explanation is biological—there are likely several

cases among the top peaks where some other protein binding next to

Table 1. Statistics of allele-specific binding analysis on the in-house

CTCF ChIP-Nexus experiment

Total number of peaks 80 806

Peaks overlapping with a SNP 4226

SNPs with a peak and an HARS 314

� Significant with UMIs 73! Fpeak
UMI ¼ 73=314 ¼ 0:232

� Significant without UMIs 142! Fpeak
read ¼ 142=314 ¼ 0:452

SNPs flanking HARS sites 1494

� Significant with UMIs 170! Fflank
UMI ¼ 170=1494 ¼ 0:114

� Significant without UMIs 407! Fflank
read ¼ 407=1494 ¼ 0:272

SNPs 50 bps from an HARS 1278

� Significant with UMIs 84! F50bp
UMI ¼ 84=1278 ¼ 0:066

� Significant without UMIs 205! F50bp
read ¼ 205=1278 ¼ 0:160

Fig. 5. Reference allele ratio as a function of binding sequence affinity change

in the in-house CTCF ChIP-Nexus experiment. The y-axis shows reference al-

lele ratio while the x-axis is the affinity change (reference minus alternate se-

quence affinity). SNPs with P value>0.01 are filtered out. Red dots represent

SNPs where alternate allele creates a CG site to the sequence but reference

does not. Yellow dots represent SNPs where sequence with reference allele

has an extra CG. Other SNPs are black. Values of correlation coefficients (r)

along with the corresponding P values are shown above the subfigures. TOP:

P values are calculated using UMIs (73 significant SNPs). BOTTOM: P values

are calculated using raw read counts (142 significant SNPs)
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the measured TF is present in a large fraction of the DNA-fragments

possibly shifting the border created by the k-exonuclease. PeakXus

may be more sensitive to this than the other methods, as it does not

fit the peak width to most enriched sites. This might be a strength of

PeakXus in the future, if the experiment is developed more sensitive

by, for example, shortening the fragment size. This would mean that

it becomes more unlikely for two TFs to fit into a same fragment,

allowing PeakXus to better separate TFs bound close to each other.

Another possible explanation is that there is some noise associated

with the stop base of the k-exonuclease and it would not always

stop at the same exact position. However, this effect is probably not

as large as the biological one.

We compared the three peak callers by analyzing the peaks

uniquely found by each of the methods. Figure 3a shows that a very

high fraction of peaks commonly reported by the three methods con-

tain the CTCF-specific HARS. These are the ‘easiest’ peaks to find

as it is expected that the top peaks are found from sites with the

highest affinity for the corresponding TF. PeakXus finds thousands

of true binding events the other methods do not detect. The result

that only 1–2% of the peaks found by MACE alone overlap with an

HARS is surprising. We mined the sequences under the top 1000

peaks reported by PeakXus, Peakzilla and MACE for common se-

quence motifs to see if the existence of some other binding sequence

could explain why so few of the peaks reported only by MACE over-

lap with a CTCF HARS. We found no strong common binding

motifs from the set of peaks unique for MACE. Furthermore when

reads with identical strand and 50-end were removed and the ana-

lysis re-run, MACE reproduced only 2005 of the 99 564 peaks from

ChIP-exo experiment by Katainen et al., and 10 549 of the 54 510

peaks from CTCF ChIP-exo experiment by Rhee and Pugh. After

removing duplicates, MACE was unable to find any peaks from in-

house ChIP-Nexus data. This highlights the difficulty of separating

true ChIP-exo/Nexus binding events from artifacts created by PCR-

duplicates if UMIs (Kivioja et al., 2012) are not used in the experi-

ment and supported by the peak caller. Importantly, comparing the

read 50-end count distributions of the method-specific peaks, it is

seen that peaks found by PeakXus but not by the other methods

have the expected appearance of a true binding event whereas

Peakzilla and MACE-specific peaks seem to be either very small

in terms of total read count or resulting from duplicated reads

(Figures 3(b–d)).

We also demonstrated how PeakXus can be used to measure the

level of allele-specific binding (ASB). We applied, to our knowledge

first time in ASB analysis, UMIs to remove duplicate reads to avoid

library amplification bias. In previous ChIP-seq ASB analyses, ac-

counting for read duplication bias has either required complicated

computational approaches (Waszak et al., 2014) or has been neg-

lected (Bailey et al., 2015). We introduced a way to account for the

uncertainty of the allelic ratios calculated from the whole genome

sequencing reads that are used as a control for the ChIP-Nexus ASB

calls. To our knowledge, this uncertainty has previously not been

considered. In Figure 5, we show a strong correlation between refer-

ence allele ratio and affinity change induced by a SNP to the binding

sequence in a CTCF ChIP-Nexus experiment indicating that our ap-

proach can be used to reliably study the allele specificity of TF bind-

ing. Moreover, the correlation is stronger when using UMIs

compared with analysis with read counts suggesting that utilizing

UMIs in ASB analysis filters out false-positives. We also observed

that conducting the ASB analysis with UMIs reports relatively more

significant ASB events under HARS sites than at the immediate

proximity of them compared with the analysis using read counts.

This further highlights usefulness of UMIs in ASB analysis as the

SNPs overlapping an HARS are expected to have the largest effect

on ASB.

Our ASB analysis was conducted using SNPs from the 1000

Genomes database. Analyzing variants from the same cells used in

the ChIP experiments will give more power to ASB analysis because

there will be more variants available. We also discussed how DNA-

methylation distorting TF binding could manifest in ChIP-exo/

Nexus ASB analysis. To properly asses the effect of methylation on

TF binding, the ChIP experiments should be coupled with bisulfite

sequencing, which is ongoing.

Large-scale screenings of TF binding locations and patterns have

thus far been conducted using ChIP-seq (e.g. ENCODE Project

Consortium, 2012). To perform such high-throughput analysis with

ChIP-exo or ChIP-Nexus requires analysis tools specifically designed

for these experiments. Here we have presented a peak caller capable

of capturing protein–DNA binding events in an unbiased manner

without making a priori assumptions about the nature of the event.

Together with a high-throughput ChIP-Nexus laboratory protocol

PeakXus will allow studying the binding patterns of different TFs

leaving room for the discovery of novel binding modes.
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